Advertisement

Vascular co-option in brain metastasis

  • Pedro García-Gómez
  • Manuel ValienteEmail author
Review Paper

Abstract

Vascular co-option by brain metastasis-initiating cells has been demonstrated as a critical step in organ colonization. The physical interaction between the cancer cell and the endothelial cell is mediated by integrins and L1CAM and could be involved in aggressive growth but also latency and immune evasion. The key involvement of vascular co-option in brain metastasis has created an emerging field that aims to identify critical targets as well as effective inhibitors with the goal of preventing brain metastases.

Keywords

Brain metastasis Capillaries Breast cancer Lung cancer Melanoma Vascular co-option 

Notes

Acknowledgements

Research in the Brain Metastasis Group is supported by MINECO-Retos SAF2017-89643-R (M.V.), Bristol-Myers Squibb-Melanoma Research Alliance Young Investigator Award (498103) (M.V.), Beug Foundation’s Prize for Metastasis Research (M.V.), Fundación Ramón Areces (CIVP19S8163) (M.V.), Worldwide Cancer Research (19-0177) (M.V.), H2020-FETOPEN (828972) (M.V.), CLIP Award Cancer Research Institute (54545) (M.V.), and AECC Coordinated Translational Groups 2017 (GCTRA16015SEOA) (M.V.). P.G-G. is the recipient of La Caixa Foundation (ID100010434) and European Union´s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement (No. 713673) PhD Program Fellowship (LCF/BQ/IN17/11620028). M.V. is a Ramón y Cajal Investigator (RYC-2013-13365) and EMBO YIP (4053).

References

  1. 1.
    Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284(5422):1994–1998CrossRefGoogle Scholar
  2. 2.
    Kienast Y, Von Baumgarten L, Fuhrmann M, Klinkert WEF, Goldbrunner R, Herms J et al (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16(1):116CrossRefGoogle Scholar
  3. 3.
    Valiente M, Obenauf AC, Jin X, Chen Q, Zhang XH-F, Lee DJ et al (2014) Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156(5):1002–1016CrossRefGoogle Scholar
  4. 4.
    Er EE, Valiente M, Ganesh K, Zou Y, Agrawal S, Hu J et al (2018) Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat Cell Biol 20:966CrossRefGoogle Scholar
  5. 5.
    Lorger M, Felding-Habermann B (2010) Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am J Pathol 176(6):2958–2971CrossRefGoogle Scholar
  6. 6.
    Bentolila LA, Prakash R, Mihic-Probst D, Wadehra M, Kleinman HK, Carmichael TS et al (2016) Imaging of angiotropism/vascular co-option in a murine model of brain melanoma: implications for melanoma progression along extravascular pathways. Sci Rep 6:23834CrossRefGoogle Scholar
  7. 7.
    Nguyen DX, Chiang AC, Zhang XH-F, Kim JY, Kris MG, Ladanyi M et al (2009) WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 138(1):51–62CrossRefGoogle Scholar
  8. 8.
    Ilhan-Mutlu A, Osswald M, Liao Y, Gömmel M, Reck M, Miles D et al (2016) Bevacizumab prevents brain metastases formation in lung adenocarcinoma. Mol Cancer Ther 15:702–710CrossRefGoogle Scholar
  9. 9.
    Ilhan-Mutlu A, Siehs C, Berghoff AS, Ricken G, Widhalm G, Wagner L et al (2016) Expression profiling of angiogenesis-related genes in brain metastases of lung cancer and melanoma. Tumor Biol 37(1):1173–1182CrossRefGoogle Scholar
  10. 10.
    Frentzas S, Simoneau E, Bridgeman VL, Vermeulen PB, Foo S, Kostaras E et al (2016) Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat Med 22:1294.  https://doi.org/10.1038/nm.4197 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Reynolds AR, Bar-Zion A, Lee CR, Kuczynski EA, Foster FS, Daley F et al (2016) Co-option of Liver vessels and not sprouting angiogenesis drives acquired Sorafenib resistance in hepatocellular carcinoma. JNCI J Natl Cancer Inst.  https://doi.org/10.1093/jnci/djw030 CrossRefPubMedGoogle Scholar
  12. 12.
    Bridgeman VL, Vermeulen PB, Foo S, Bilecz A, Daley F, Kostaras E et al (2017) Vessel co-option is common in human lung metastases and mediates resistance to anti-angiogenic therapy in preclinical lung metastasis models. J Pathol 241(3):362–374.  https://doi.org/10.1002/path.4845 CrossRefPubMedGoogle Scholar
  13. 13.
    Yano S, Shinohara H, Herbst RS, Kuniyasu H, Bucana CD, Ellis LM et al (2000) Expression of vascular endothelial growth factor is necessary but not sufficient for production and growth of brain metastasis. Cancer Res 60(17):4959–4967PubMedGoogle Scholar
  14. 14.
    Jubb AM, Cesario A, Ferguson M, Congedo MT, Gatter KC, Lococo F et al (2011) Vascular phenotypes in primary non-small cell lung carcinomas and matched brain metastases. Br J Cancer 104:1877.  https://doi.org/10.1038/bjc.2011.147 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Carbonell WS, Ansorge O, Sibson N, Muschel R (2009) The vascular basement membrane as “soil” in brain metastasis. PLoS ONE 4(6):e5857CrossRefGoogle Scholar
  16. 16.
    Lorenz L, Axnick J, Buschmann T, Henning C, Urner S, Fang S et al (2018) Mechanosensing by β1 integrin induces angiocrine signals for liver growth and survival. Nature 562(7725):128–132.  https://doi.org/10.1038/s41586-018-0522-3 CrossRefPubMedGoogle Scholar
  17. 17.
    Rafii S, Butler JM, Ding B-S (2016) Angiocrine functions of organ-specific endothelial cells. Nature 529:316.  https://doi.org/10.1038/nature17040 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lu J, Ye X, Fan F, Xia L, Bhattacharya R, Bellister S et al (2013) Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of jagged-1. Cancer Cell 23(2):171–185CrossRefGoogle Scholar
  19. 19.
    Wieland E, Rodriguez-Vita J, Liebler SS, Mogler C, Moll I, Herberich SE et al (2017) Endothelial Notch1 activity facilitates metastasis. Cancer Cell 31(3):355–367CrossRefGoogle Scholar
  20. 20.
    Beck B, Driessens G, Goossens S, Youssef KK, Kuchnio A, Caauwe A et al (2011) A vascular niche and a VEGF–Nrp1 loop regulate the initiation and stemness of skin tumours. Nature 478(7369):399CrossRefGoogle Scholar
  21. 21.
    Cao Z, Ding B-S, Guo P, Lee SB, Butler JM, Casey SC et al (2014) Angiocrine factors deployed by tumor vascular niche induce B cell lymphoma invasiveness and chemoresistance. Cancer Cell 25(3):350–365CrossRefGoogle Scholar
  22. 22.
    Fan J, Cai B, Zeng M, Hao Y, Giancotti FG, Fu BM (2011) Integrin β4 signaling promotes mammary tumor cell adhesion to brain microvascular endothelium by inducing ErbB2-mediated secretion of VEGF. Ann Biomed Eng 39(8):2223–2241CrossRefGoogle Scholar
  23. 23.
    Yao H, Price TT, Cantelli G, Ngo B, Warner MJ, Olivere L et al (2018) Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature 560(7716):55–60.  https://doi.org/10.1038/s41586-018-0342-5 CrossRefPubMedGoogle Scholar
  24. 24.
    Wiencken-Barger AE, Mavity-Hudson J, Bartsch U, Schachner M, Casagrande VA (2004) The role of L1 in axon pathfinding and fasciculation. Cereb Cortex 14(2):121–131CrossRefGoogle Scholar
  25. 25.
    Felding-Habermann B, Silletti S, Mei F, Siu C-H, Yip PM, Brooks PC et al (1997) A single immunoglobulin-like domain of the human neural cell adhesion molecule L1 supports adhesion by multiple vascular and platelet integrins. J Cell Biol 139(6):1567–1581CrossRefGoogle Scholar
  26. 26.
    Donier E, Gomez-Sanchez JA, Grijota-Martinez C, Lakomá J, Baars S, Garcia-Alonso L et al (2012) L1CAM binds ErbB receptors through Ig-like domains coupling cell adhesion and neuregulin signalling. PLoS ONE 7(7):e40674CrossRefGoogle Scholar
  27. 27.
    Kulahin N, Li S, Hinsby A, Kiselyov V, Berezin V, Bock E (2008) Fibronectin type III (FN3) modules of the neuronal cell adhesion molecule L1 interact directly with the fibroblast growth factor (FGF) receptor. Mol Cell Neurosci 37(3):528–536CrossRefGoogle Scholar
  28. 28.
    Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H et al (2013) The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 15(7):807CrossRefGoogle Scholar
  29. 29.
    Malladi S, Macalinao DG, Jin X, He L, Basnet H, Zou Y et al (2016) Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell 165(1):45–60CrossRefGoogle Scholar
  30. 30.
    Gao H, Chakraborty G, Zhang Z, Akalay I, Gadiya M, Gao Y et al (2016) Multi-organ site metastatic reactivation mediated by non-canonical discoidin domain receptor 1 signaling. Cell 166(1):47–62CrossRefGoogle Scholar
  31. 31.
    Berghoff AS, Rajky O, Winkler F, Bartsch R, Furtner J, Hainfellner JA et al (2013) Invasion patterns in brain metastases of solid cancers. Neuro Oncol 15(12):1664–1672CrossRefGoogle Scholar
  32. 32.
    Soria J-C, Mauguen A, Reck M, Sandler AB, Saijo N, Johnson DH et al (2012) Systematic review and meta-analysis of randomised, phase II/III trials adding bevacizumab to platinum-based chemotherapy as first-line treatment in patients with advanced non-small-cell lung cancer. Ann Oncol 24(1):20–30CrossRefGoogle Scholar
  33. 33.
    Reck M, von Pawel J, Zatloukal P, Ramlau R, Gorbounova V, Hirsh V et al (2009) Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non–small-cell lung cancer: AVAiL. J Clin Oncol 27(8):1227–1234CrossRefGoogle Scholar
  34. 34.
    Jain RK (2014) Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26(5):605–622CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Brain Metastasis GroupSpanish National Cancer Research Center (CNIO)MadridSpain

Personalised recommendations