pp 1–14 | Cite as

Anti-secretogranin III therapy of oxygen-induced retinopathy with optimal safety

  • Fen Tang
  • Michelle E. LeBlanc
  • Weiwen Wang
  • Dan Liang
  • Ping Chen
  • Tsung-Han Chou
  • Hong Tian
  • Wei Li
Original Paper


Retinopathy of prematurity (ROP) with pathological retinal neovascularization is the most common cause of blindness in children. ROP is currently treated with laser therapy or cryotherapy, both of which may adversely affect the peripheral vision with limited efficacy. Owing to the susceptibility of the developing retina and vasculatures to pharmacological intervention, there is currently no approved drug therapy for ROP in preterm infants. Secretogranin III (Scg3) was recently discovered as a highly disease-restricted angiogenic factor, and a Scg3-neutralizing monoclonal antibody (mAb) was reported with high efficacy to alleviate oxygen-induced retinopathy (OIR) in mice, a surrogate model of ROP. Herein we independently investigated the efficacy of anti-Scg3 mAb in OIR mice and characterized its safety in neonatal mice. We developed a new Scg3-neutralizing mAb recognizing a distinct epitope and independently established the therapeutic activity of anti-Scg3 therapy to alleviate OIR-induced pathological retinal neovascularization in mice. Importantly, anti-Scg3 mAb showed no detectable adverse effects on electroretinography and developing retinal vasculature. Furthermore, systemic anti-Scg3 mAb induced no renal tubular injury or abnormality in kidney vessel development and body weight gain of neonatal mice. In contrast, anti-vascular endothelial growth factor drug aflibercept showed significant side effects in neonatal mice. These results suggest that anti-Scg3 mAb may have the safety and efficacy profiles required for ROP therapy.


Secretogranin III Scg3 Angiogenic factor Anti-angiogenic therapy Oxygen-induced retinopathy Retinopathy of prematurity 



The authors thank Keith Webster and Philip Rosenfeld for scientific advice and discussion, Rong Wen for instrument support, G. Gaidosh for confocal service, Zhijie Niu for technical support.


This study was supported by NIH R01EY027749-01A1 (W.L.), R21EY027065 (W.L.), R41EY027665 (W.L. and H.T.), American Diabetes Association 1-18-IBS-172 (W.L.), Special Scholar Award from Research to Prevent Blindness (RPB) (W.L.), the Postgraduate Program of China Scholarships Council #[2016] 3100 (F.T.), American Heart Association Predoctoral Fellowship 14PRE18310014 and 16PRE27250308 (M.E.L), NIH P30-EY014801 and an institutional grant from RPB.

Compliance with ethical standards

Conflict of interest

M.E.L, H.T. and W.L. are shareholders of Everglades Biopharma, LLC and/or LigandomicsRx, LLC. M.E.L., W.W. and W.L. are inventors of pending patents.

Supplementary material

10456_2019_9662_MOESM1_ESM.pdf (329 kb)
Supplementary material 1 (PDF 328 KB)


  1. 1.
    Chen HX, Cleck JN (2009) Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol 6(8):465–477. CrossRefGoogle Scholar
  2. 2.
    Hellstrom A, Smith LE, Dammann O (2013) Retinopathy of prematurity. Lancet 382(9902):1445–1457. CrossRefGoogle Scholar
  3. 3.
    National Eye Institute. Facts about retinopathy of prematurity (ROP). at
  4. 4.
    Mantagos IS, Vanderveen DK, Smith LE (2009) Emerging treatments for retinopathy of prematurity. Semin Ophthalmol 24(2):82–86. CrossRefGoogle Scholar
  5. 5.
    Paulus YM, Sodhi A (2017) Anti-angiogenic therapy for retinal disease. Handb Exp Pharmacol 242:271–307. CrossRefGoogle Scholar
  6. 6.
    Zhang G, Yang M, Zeng J, Vakros G, Su K, Chen M et al (2017) Comparison of intravitreal injection of ranibizumab versus laser therapy for zone Ii treatment-requiring retinopathy of prematurity. Retina 37(4):710–717. CrossRefGoogle Scholar
  7. 7.
    Mintz-Hittner HA, Kennedy KA, Chuang AZ, Group B-RC (2011) Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N Engl J Med 364(7):603–615. CrossRefGoogle Scholar
  8. 8.
    Mintz-Hittner HA, Geloneck MM, Chuang AZ (2016) Clinical management of recurrent retinopathy of prematurity after intravitreal bevacizumab monotherapy. Ophthalmology 123(9):1845–1855. CrossRefGoogle Scholar
  9. 9.
    Lepore D, Quinn GE, Molle F, Baldascino A, Orazi L, Sammartino M et al (2014) Intravitreal bevacizumab versus laser treatment in type 1 retinopathy of prematurity: report on fluorescein angiographic findings. Ophthalmology 121(11):2212–2219. CrossRefGoogle Scholar
  10. 10.
    Jang SY, Choi KS, Lee SJ (2010) Delayed-onset retinal detachment after an intravitreal injection of ranibizumab for zone 1 plus retinopathy of prematurity. J Am Assoc Pediatr Opthalmol Strabismus 14(5):457–459. CrossRefGoogle Scholar
  11. 11.
    Tokunaga CC, Mitton KP, Dailey W, Massoll C, Roumayah K, Guzman E et al (2014) Effects of anti-VEGF treatment on the recovery of the developing retina following oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 55(3):1884–1892. CrossRefGoogle Scholar
  12. 12.
    Lutty GA, McLeod DS, Bhutto I, Wiegand SJ (2011) Effect of VEGF trap on normal retinal vascular development and oxygen-induced retinopathy in the dog. Invest Ophthalmol Vis Sci 52(7):4039–4047. CrossRefGoogle Scholar
  13. 13.
    LeBlanc ME, Wang W, Chen X, Caberoy NB, Guo F, Shen C et al (2017) Secretogranin III as a disease-associated ligand for antiangiogenic therapy of diabetic retinopathy. J Exp Med 214(4):1029–1047. CrossRefGoogle Scholar
  14. 14.
    Kim CB, D’Amore PA, Connor KM (2016) Revisiting the mouse model of oxygen-induced retinopathy. Eye Brain 8:67–79. CrossRefGoogle Scholar
  15. 15.
    Wang Z, Raifu M, Howard M, Smith L, Hansen D, Goldsby R et al (2000) Universal PCR amplification of mouse immunoglobulin gene variable regions: the design of degenerate primers and an assessment of the effect of DNA polymerase 3′ to 5′ exonuclease activity. J Immunol Methods 233(1–2):167–177CrossRefGoogle Scholar
  16. 16.
    Kim Y, Caberoy NB, Alvarado G, Davis JL, Feuer WJ, Li W (2011) Identification of Hnrph3 as an autoantigen for acute anterior uveitis. Clin Immunol 138(1):60–66CrossRefGoogle Scholar
  17. 17.
    Leenaars M, Hendriksen CF (2005) Critical steps in the production of polyclonal and monoclonal antibodies: evaluation and recommendations. Ilar J 46(3):269–279CrossRefGoogle Scholar
  18. 18.
    Abdiche YN, Miles A, Eckman J, Foletti D, Van Blarcom TJ, Yeung YA et al (2014) High-throughput epitope binning assays on label-free array-based biosensors can yield exquisite epitope discrimination that facilitates the selection of monoclonal antibodies with functional activity. PLoS ONE 9(3):e92451. CrossRefGoogle Scholar
  19. 19.
    Estep P, Reid F, Nauman C, Liu Y, Sun T, Sun J et al (2013) High throughput solution-based measurement of antibody-antigen affinity and epitope binning. mAbs 5(2):270–278. CrossRefGoogle Scholar
  20. 20.
    Barbas CF, Kang AS, Lerner RA, Benkovic SJ (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci USA 88(18):7978–7982CrossRefGoogle Scholar
  21. 21.
    Barbas CF, Burton DR, Scott JK, Silverman GJ (2000) Phage display: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  22. 22.
    Li W, Handschumacher RE (2002) Identification of two calcineurin B-binding proteins: tubulin and heat shock protein 60. Biochim Biophys Acta 1599(1–2):72–81CrossRefGoogle Scholar
  23. 23.
    Caberoy NB, Zhou Y, Jiang X, Alvarado G, Li W (2010) Efficient identification of tubby-binding proteins by an improved system of T7 phage display. J Mol Recognit 23(1):74–83Google Scholar
  24. 24.
    Connor KM, Krah NM, Dennison RJ, Aderman CM, Chen J, Guerin KI et al (2009) Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat Protoc 4(11):1565–1573. CrossRefGoogle Scholar
  25. 25.
    Li W, Krasinski SD, Verhave M, Montgomery RK, Grand RJ (1998) Three distinct messenger RNA distribution patterns in human jejunal enterocytes. Gastroenterology 115(1):86–92CrossRefGoogle Scholar
  26. 26.
    Kurus M, Ugras M, Esrefoglu M (2009) Effect of resveratrol on tubular damage and interstitial fibrosis in kidneys of rats exposed to cigarette smoke. Toxicol Ind Health 25(8):539–544. CrossRefGoogle Scholar
  27. 27.
    Toledo-Rodriguez M, Loyse N, Bourdon C, Arab S, Pausova Z (2012) Effect of prenatal exposure to nicotine on kidney glomerular mass and AT1R expression in genetically diverse strains of rats. Toxicol Lett 213(2):228–234. CrossRefGoogle Scholar
  28. 28.
    Sapieha P (2012) Eyeing central neurons in vascular growth and reparative angiogenesis. Blood 120(11):2182–2194. CrossRefGoogle Scholar
  29. 29.
    Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442. CrossRefGoogle Scholar
  30. 30.
    Kingsley DM, Rinchik EM, Russell LB, Ottiger HP, Sutcliffe JG, Copeland NG et al (1990) Genetic ablation of a mouse gene expressed specifically in brain. EMBO J 9(2):395–399CrossRefGoogle Scholar
  31. 31.
    Wu WC, Lien R, Liao PJ, Wang NK, Chen YP, Chao AN et al (2015) Serum levels of vascular endothelial growth factor and related factors after intravitreous bevacizumab injection for retinopathy of prematurity. JAMA Ophthalmol 133(4):391–397. CrossRefGoogle Scholar
  32. 32.
    Sato T, Wada K, Arahori H, Kuno N, Imoto K, Iwahashi-Shima C et al (2012) Serum concentrations of bevacizumab (avastin) and vascular endothelial growth factor in infants with retinopathy of prematurity. Am J Ophthalmol 153(2):327 – 33 e1. CrossRefGoogle Scholar
  33. 33.
    Kandasamy Y, Hartley L, Rudd D, Smith R (2017) The association between systemic vascular endothelial growth factor and retinopathy of prematurity in premature infants: a systematic review. Br J Ophthalmol 101(1):21–24. CrossRefGoogle Scholar
  34. 34.
    Darlow BA, Ells AL, Gilbert CE, Gole GA, Quinn GE (2013) Are we there yet? Bevacizumab therapy for retinopathy of prematurity. Arch Dis Child Fetal Neonatal Ed 98(2):F170–F174. CrossRefGoogle Scholar
  35. 35.
    McGrath-Morrow S, Cho C, Molls R, Burne-Taney M, Haas M, Hicklin DJ et al (2006) VEGF receptor 2 blockade leads to renal cyst formation in mice. Kidney Int 69(10):1741–1748. CrossRefGoogle Scholar
  36. 36.
    Rosenstein JM, Mani N, Khaibullina A, Krum JM (2003) Neurotrophic effects of vascular endothelial growth factor on organotypic cortical explants and primary cortical neurons. J Neurosci 23(35):11036–11044CrossRefGoogle Scholar
  37. 37.
    Atchaneeyasakul LO, Trinavarat A (2010) Choroidal ruptures after adjuvant intravitreal injection of bevacizumab for aggressive posterior retinopathy of prematurity. J Perinatol 30(7):497–499. CrossRefGoogle Scholar
  38. 38.
    Wu WC, Yeh PT, Chen SN, Yang CM, Lai CC, Kuo HK (2011) Effects and complications of bevacizumab use in patients with retinopathy of prematurity: a multicenter study in taiwan. Ophthalmology 118(1):176–183. CrossRefGoogle Scholar
  39. 39.
    Suk KK, Berrocal AM, Murray TG, Rich R, Major JC, Hess D et al (2010) Retinal detachment despite aggressive management of aggressive posterior retinopathy of prematurity. J Pediatr Ophthalmol Strabismus 47 Online:e1–e4. CrossRefGoogle Scholar
  40. 40.
    Geloneck MM, Chuang AZ, Clark WL, Hunt MG, Norman AA, Packwood EA et al (2014) Refractive outcomes following bevacizumab monotherapy compared with conventional laser treatment: a randomized clinical trial. JAMA Ophthalmol 132(11):1327–1333. CrossRefGoogle Scholar
  41. 41.
    Autrata R, Krejcirova I, Senkova K, Holousova M, Dolezel Z, Borek I (2012) Intravitreal pegaptanib combined with diode laser therapy for stage 3+ retinopathy of prematurity in zone I and posterior zone II. Eur J Ophthalmol 22(5):687–694. CrossRefGoogle Scholar
  42. 42.
    Al-Hilal TA, Chung SW, Choi JU, Alam F, Park J, Kim SW et al (2016) Targeting prion-like protein doppel selectively suppresses tumor angiogenesis. J Clin Invest 126(4):1251–1266. CrossRefGoogle Scholar
  43. 43.
    Takeda A, Baffi JZ, Kleinman ME, Cho WG, Nozaki M, Yamada K et al (2009) CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature 460(7252):225–230. CrossRefGoogle Scholar
  44. 44.
    Li Y, Huang D, Xia X, Wang Z, Luo L, Wen R (2011) CCR3 and choroidal neovascularization. PLoS ONE 6(2):e17106. CrossRefGoogle Scholar
  45. 45.
    Ottiger HP, Battenberg EF, Tsou AP, Bloom FE, Sutcliffe JG (1990) 1B1075: a brain- and pituitary-specific mRNA that encodes a novel chromogranin/secretogranin-like component of intracellular vesicles. J Neurosci 10(9):3135–3147CrossRefGoogle Scholar
  46. 46.
    Li W, Pang IH, Pacheco MTF, Tian H (2018) Ligandomics: a paradigm shift in biological drug discovery. Drug Discov Today 23(3):636–643. CrossRefGoogle Scholar
  47. 47.
    Sau S, Alsaab HO, Kashaw SK, Tatiparti K, Iyer AK (2017) Advances in antibody-drug conjugates: a new era of targeted cancer therapy. Drug Discov Today 22(10):1547–1556. CrossRefGoogle Scholar
  48. 48.
    de Aguirre Neto JC, Antoneli CB, Ribeiro KB, Castilho MS, Novaes PE, Chojniak MM et al (2007) Retinoblastoma in children older than 5 years of age. Pediatr Blood Cancer 48(3):292–295. CrossRefGoogle Scholar
  49. 49.
    Dedania VS, Bakri SJ (2015) Current perspectives on ranibizumab. Clin Ophthalmol 9:533–542. Google Scholar
  50. 50.
    Drug_Information. Lucentis prescribing information by U.S. Food and Drug Administration at

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of OphthalmologyBascom Palmer Eye Institute, University of Miami School of MedicineMiamiUSA
  2. 2.State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat-Sen UniversityGuangzhouChina
  3. 3.Department of OphthalmologyRenji Hospital of Shanghai Jiaotong UniversityShanghaiChina
  4. 4.Everglades Biopharma, LLCMiamiUSA

Personalised recommendations