, Volume 22, Issue 2, pp 251–262 | Cite as

The regulatory network of miR-141 in the inhibition of angiogenesis

  • Haojie Dong
  • Chunhua Weng
  • Rongpan Bai
  • Jinghao Sheng
  • Xiangwei Gao
  • Ling Li
  • Zhengping XuEmail author
Original Paper


The miR-200 family, consisting of miR-200a/b/c, miR-141, and miR-429, is well known to inhibit epithelial-to-mesenchymal transition (EMT) in cancer invasion and metastasis. Among the miR-200 family members, miR-200a/b/c and miR-429 have been reported to inhibit angiogenesis. However, the role of miR-141 in angiogenesis remains elusive, as contradicting results have been found in different cancer types and tumor models. Particularly, the effect of miR-141 in vascular endothelial cells has not been defined. In this study, we used several in vitro and in vivo models to demonstrate that miR-141 in endothelial cells inhibits angiogenesis. Additional mechanistic studies showed that miR-141 suppresses angiogenesis through multiple targets, including NRP1, GAB1, CXCL12β, TGFβ2, and GATA6, and bioinformatics analysis indicated that miR-141 and its targets comprise a powerful and precise regulatory network to modulate angiogenesis. Taken together, these data not only demonstrate an anti-angiogenic effect of miR-141, further strengthening the critical role of miR-200 family in the process of angiogenesis, but also provides a valuable cancer therapeutic target to control both angiogenesis and EMT, two essential steps in tumor growth and metastasis.


miR-141 miR-200 family Angiogenesis Regulatory network 



We appreciate Dr. Kerin Higa (City of Hope) and Dr. Wen Jin (Sigilon therapeutics) for critically reading the manuscript and for helpful discussions. This work was supported by the grants from the National Natural Science Foundation of China [Grant Numbers 31570786, 31600630 and 31770867] and the China Postdoctoral Science Foundation China [Grant Number 2016M591990].

Supplementary material

10456_2018_9654_MOESM1_ESM.pptx (3.8 mb)
Supplementary Figures 1 (PPTX 3857 KB)
10456_2018_9654_MOESM2_ESM.pptx (461 kb)
Supplementary Tables 2 (PPTX 461 KB)
10456_2018_9654_MOESM3_ESM.docx (23 kb)
Supplementary material 3 (DOCX 23 KB)


  1. 1.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186CrossRefGoogle Scholar
  2. 2.
    Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936CrossRefGoogle Scholar
  3. 3.
    De Palma M, Biziato D, Petrova TV (2017) Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 17(8):457–474CrossRefGoogle Scholar
  4. 4.
    Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524CrossRefGoogle Scholar
  5. 5.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297CrossRefGoogle Scholar
  6. 6.
    Fish JE, Srivastava D (2009) MicroRNAs: opening a new vein in angiogenesis research. Sci Signal 2(52):pe1CrossRefGoogle Scholar
  7. 7.
    Wang W, Zhang E, Lin C (2015) MicroRNAs in tumor angiogenesis. Life Sci 136:28–35CrossRefGoogle Scholar
  8. 8.
    Korpal M, Kang Y (2008) The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol 5(3):115–119CrossRefGoogle Scholar
  9. 9.
    Mongroo PS, Rustgi AK (2010) The role of the miR-200 family in epithelial-mesenchymal transition. Cancer Biol Ther 10(3):219–222CrossRefGoogle Scholar
  10. 10.
    Zhang HF, Xu LY, Li EM (2014) A family of pleiotropically acting microRNAs in cancer progression, miR-200: potential cancer therapeutic targets. Curr Pharm Des 20(11):1896–1903CrossRefGoogle Scholar
  11. 11.
    Chan YC, Khanna S, Roy S, Sen CK (2011) miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells. J Biol Chem 286(3):2047–2056CrossRefGoogle Scholar
  12. 12.
    Bartoszewska S, Kochan K, Piotrowski A, Kamysz W, Ochocka RJ, Collawn JF, Bartoszewski R (2015) The hypoxia-inducible miR-429 regulates hypoxia-inducible factor-1alpha expression in human endothelial cells through a negative feedback loop. FASEB J 29(4):1467–1479CrossRefGoogle Scholar
  13. 13.
    Ding Y, Hu Z, Luan J, Lv X, Yuan D, Xie P, Yuan S, Liu Q (2017) Protective effect of miR-200b/c by inhibiting vasohibin-2 in human retinal microvascular endothelial cells. Life Sci 191:245–252CrossRefGoogle Scholar
  14. 14.
    Mateescu B, Batista L, Cardon M, Gruosso T, de Feraudy Y, Mariani O, Nicolas A, Meyniel JP, Cottu P, Sastre-Garau X, Mechta-Grigoriou F (2011) miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat Med 17(12):1627–1635CrossRefGoogle Scholar
  15. 15.
    Tejero R, Navarro A, Campayo M, Vinolas N, Marrades RM, Cordeiro A, Ruiz-Martinez M, Santasusagna S, Molins L, Ramirez J, Monzo M (2014) miR-141 and miR-200c as markers of overall survival in early stage non-small cell lung cancer adenocarcinoma. PLoS ONE 9(7):e101899CrossRefGoogle Scholar
  16. 16.
    Pecot CV, Rupaimoole R, Yang D, Akbani R, Ivan C, Lu C, Wu S, Han HD, Shah MY, Rodriguez-Aguayo C, Bottsford-Miller J, Liu Y, Kim SB, Unruh A, Gonzalez-Villasana V, Huang L, Zand B, Moreno-Smith M, Mangala LS, Taylor M, Dalton HJ, Sehgal V, Wen Y, Kang Y, Baggerly KA, Lee JS, Ram PT, Ravoori MK, Kundra V, Zhang X, Ali-Fehmi R, Gonzalez-Angulo AM, Massion PP, Calin GA, Lopez-Berestein G, Zhang W, Sood AK (2013) Tumour angiogenesis regulation by the miR-200 family. Nat Commun 4:2427CrossRefGoogle Scholar
  17. 17.
    Weng C, Dong H, Chen G, Zhai Y, Bai R, Hu H, Lu L, Xu Z (2012) miR-409-3p inhibits HT1080 cell proliferation, vascularization and metastasis by targeting angiogenin. Cancer Lett 323(2):171–179CrossRefGoogle Scholar
  18. 18.
    Mriouah J, Boura C, Thomassin M, Bastogne T, Dumas D, Faivre B, Barberi-Heyob M (2012) Tumor vascular responses to antivascular and antiangiogenic strategies: looking for suitable models. Trends Biotechnol 30(12):649–658CrossRefGoogle Scholar
  19. 19.
    Malinda KM (2009) In vivo matrigel migration and angiogenesis assay. Methods Mol Biol 467:287–294CrossRefGoogle Scholar
  20. 20.
    Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4:e05005CrossRefGoogle Scholar
  21. 21.
    Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37(5):495–500CrossRefGoogle Scholar
  22. 22.
    Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, Filippidis C, Dalamagas T, Hatzigeorgiou AG (2013) DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 41:W169–W173 (Web Server issue)CrossRefGoogle Scholar
  23. 23.
    Salcedo R, Oppenheim JJ (2003) Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses. Microcirculation 10(3–4):359–370CrossRefGoogle Scholar
  24. 24.
    Song ZY, Wang F, Cui SX, Qu XJ (2018) Knockdown of CXCR4 inhibits CXCL12-induced angiogenesis in HUVECs through downregulation of the MAPK/ERK and PI3K/AKT and the Wnt/beta-catenin pathways. Cancer Investig 36(1):10–18CrossRefGoogle Scholar
  25. 25.
    Shioyama W, Nakaoka Y, Higuchi K, Minami T, Taniyama Y, Nishida K, Kidoya H, Sonobe T, Naito H, Arita Y, Hashimoto T, Kuroda T, Fujio Y, Shirai M, Takakura N, Morishita R, Yamauchi-Takihara K, Kodama T, Hirano T, Mochizuki N, Komuro I (2011) Docking protein Gab1 is an essential component of postnatal angiogenesis after ischemia via HGF/c-met signaling. Circ Res 108(6):664–675CrossRefGoogle Scholar
  26. 26.
    Laramee M, Chabot C, Cloutier M, Stenne R, Holgado-Madruga M, Wong AJ, Royal I (2007) The scaffolding adapter Gab1 mediates vascular endothelial growth factor signaling and is required for endothelial cell migration and capillary formation. J Biol Chem 282(11):7758–7769CrossRefGoogle Scholar
  27. 27.
    Froese N, Kattih B, Breitbart A, Grund A, Geffers R, Molkentin JD, Kispert A, Wollert KC, Drexler H, Heineke J (2011) GATA6 promotes angiogenic function and survival in endothelial cells by suppression of autocrine transforming growth factor beta/activin receptor-like kinase 5 signaling. J Biol Chem 286(7):5680–5690CrossRefGoogle Scholar
  28. 28.
    Koch S (2012) Neuropilin signalling in angiogenesis. Biochem Soc Trans 40(1):20–25CrossRefGoogle Scholar
  29. 29.
    Kofler NM, Simons M (2015) Angiogenesis versus arteriogenesis: neuropilin 1 modulation of VEGF signaling. F1000Prime Rep 7:26CrossRefGoogle Scholar
  30. 30.
    Iwatsuki K, Tanaka K, Kaneko T, Kazama R, Okamoto S, Nakayama Y, Ito Y, Satake M, Takahashi S, Miyajima A, Watanabe T, Hara T (2005) Runx1 promotes angiogenesis by downregulation of insulin-like growth factor-binding protein-3. Oncogene 24(7):1129–1137CrossRefGoogle Scholar
  31. 31.
    Sangpairoj K, Vivithanaporn P, Apisawetakan S, Chongthammakun S, Sobhon P, Chaithirayanon K (2017) RUNX1 regulates migration, invasion, and angiogenesis via p38 MAPK pathway in human glioblastoma. Cell Mol Neurobiol 37(7):1243–1255CrossRefGoogle Scholar
  32. 32.
    Goumans MJ, Lebrin F, Valdimarsdottir G (2003) Controlling the angiogenic switch: a balance between two distinct TGF-b receptor signaling pathways. Trends Cardiovasc Med 13(7):301–307CrossRefGoogle Scholar
  33. 33.
    Liao KH, Chang SJ, Chang HC, Chien CL, Huang TS, Feng TC, Lin WW, Shih CC, Yang MH, Yang SH, Lin CH, Hwang WL, Lee OK (2017) Endothelial angiogenesis is directed by RUNX1T1-regulated VEGFA, BMP4 and TGF-beta2 expression. PLoS ONE 12(6):e0179758CrossRefGoogle Scholar
  34. 34.
    Huang Z, Shi T, Zhou Q, Shi S, Zhao R, Shi H, Dong L, Zhang C, Zeng K, Chen J, Zhang J (2014) miR-141 Regulates colonic leukocytic trafficking by targeting CXCL12beta during murine colitis and human Crohn’s disease. Gut 63(8):1247–1257CrossRefGoogle Scholar
  35. 35.
    Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9(6):582–589CrossRefGoogle Scholar
  36. 36.
    Feng J, Xue S, Pang Q, Rang Z, Cui F (2017) miR-141-3p inhibits fibroblast proliferation and migration by targeting GAB1 in keloids. Biochem Biophys Res Commun 490(2):302–308CrossRefGoogle Scholar
  37. 37.
    Lu Y, Xiong Y, Huo Y, Han J, Yang X, Zhang R, Zhu DS, Klein-Hessling S, Li J, Zhang X, Han X, Li Y, Shen B, He Y, Shibuya M, Feng GS, Luo J (2011) Grb-2-associated binder 1 (Gab1) regulates postnatal ischemic and VEGF-induced angiogenesis through the protein kinase A-endothelial NOS pathway. Proc Natl Acad Sci USA 108(7):2957–2962CrossRefGoogle Scholar
  38. 38.
    Murga M, Fernandez-Capetillo O, Tosato G (2005) Neuropilin-1 regulates attachment in human endothelial cells independently of vascular endothelial growth factor receptor-2. Blood 105(5):1992–1999CrossRefGoogle Scholar
  39. 39.
    Heidemann J, Ogawa H, Rafiee P, Lugering N, Maaser C, Domschke W, Binion DG, Dwinell MB (2004) Mucosal angiogenesis regulation by CXCR4 and its ligand CXCL12 expressed by human intestinal microvascular endothelial cells. Am J Physiol Gastrointest Liver Physiol 286(6):G1059–G1068CrossRefGoogle Scholar
  40. 40.
    Gao Y, Feng B, Han S, Zhang K, Chen J, Li C, Wang R, Chen L (2016) The roles of MicroRNA-141 in human cancers: from diagnosis to treatment. Cell Physiol Biochem 38(2):427–448CrossRefGoogle Scholar
  41. 41.
    Choi YC, Yoon S, Jeong Y, Yoon J, Baek K (2011) Regulation of vascular endothelial growth factor signaling by miR-200b. Mol Cells 32(1):77–82CrossRefGoogle Scholar
  42. 42.
    Sinha M, Ghatak S, Roy S, Sen CK (2015) microRNA-200b as a switch for inducible adult angiogenesis. Antioxid Redox Signal 22(14):1257–1272CrossRefGoogle Scholar
  43. 43.
    Chuang TD, Panda H, Luo X, Chegini N (2012) miR-200c is aberrantly expressed in leiomyomas in an ethnic-dependent manner and targets ZEBs, VEGFA, TIMP2, and FBLN5. Endocr Relat Cancer 19(4):541–556CrossRefGoogle Scholar
  44. 44.
    Shi L, Zhang S, Wu H, Zhang L, Dai X, Hu J, Xue J, Liu T, Liang Y, Wu G (2013) MiR-200c increases the radiosensitivity of non-small-cell lung cancer cell line A549 by targeting VEGF-VEGFR2 pathway. PLoS ONE 8(10):e78344CrossRefGoogle Scholar
  45. 45.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233CrossRefGoogle Scholar
  46. 46.
    Lebrin F, Deckers M, Bertolino P, Ten Dijke P (2005) TGF-beta receptor function in the endothelium. Cardiovasc Res 65(3):599–608CrossRefGoogle Scholar
  47. 47.
    Dykxhoorn DM, Wu Y, Xie H, Yu F, Lal A, Petrocca F, Martinvalet D, Song E, Lim B, Lieberman J (2009) miR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS ONE 4(9):e7181CrossRefGoogle Scholar
  48. 48.
    Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA, Celia-Terrassa T, Mercatali L, Khan Z, Goodarzi H, Hua Y, Wei Y, Hu G, Garcia BA, Ragoussis J, Amadori D, Harris AL, Kang Y (2011) Direct targeting of Sec23a by miR-200 s influences cancer cell secretome and promotes metastatic colonization. Nat Med 17(9):1101–1108CrossRefGoogle Scholar
  49. 49.
    Le MT, Hamar P, Guo C, Basar E, Perdigao-Henriques R, Balaj L, Lieberman J (2014) miR-200-containing extracellular vesicles promote breast cancer cell metastasis. J Clin Investig 124(12):5109–5128CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute of Environmental Medicine, and Cancer Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
  2. 2.Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesZhejiang UniversityHangzhouChina
  3. 3.Program in Molecular and Cellular BiologyZhejiang University School of MedicineHangzhouChina
  4. 4.Department of Hematological Malignancies Translational Science, Beckman Research InstituteCity of Hope Medical CenterDuarteUSA
  5. 5.Kidney Disease Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouChina

Personalised recommendations