Advertisement

Angiogenesis

, Volume 22, Issue 1, pp 37–52 | Cite as

Cellular self-assembly into 3D microtissues enhances the angiogenic activity and functional neovascularization capacity of human cardiopoietic stem cells

  • Petra Wolint
  • Annina Bopp
  • Anna Woloszyk
  • Yinghua Tian
  • Olivera Evrova
  • Monika Hilbe
  • Pietro Giovanoli
  • Maurizio Calcagni
  • Simon P. HoerstrupEmail author
  • Johanna Buschmann
  • Maximilian Y. EmmertEmail author
Original Paper

Abstract

While cell therapy has been proposed as next-generation therapy to treat the diseased heart, current strategies display only limited clinical efficacy. Besides the ongoing quest for the ideal cell type, in particular the very low retention rate of single-cell (SC) suspensions after delivery remains a major problem. To improve cellular retention, cellular self-assembly into 3D microtissues (MTs) prior to transplantation has emerged as an encouraging alternative. Importantly, 3D-MTs have also been reported to enhance the angiogenic activity and neovascularization potential of stem cells. Therefore, here using the chorioallantoic membrane (CAM) assay we comprehensively evaluate the impact of cell format (SCs versus 3D-MTs) on the angiogenic potential of human cardiopoietic stem cells, a promising second-generation cell type for cardiac repair. Biodegradable collagen scaffolds were seeded with human cardiopoietic stem cells, either as SCs or as 3D-MTs generated by using a modified hanging drop method. Thereafter, seeded scaffolds were placed on the CAM of living chicken embryos and analyzed for their perfusion capacity in vivo using magnetic resonance imaging assessment which was then linked to a longitudinal histomorphometric ex vivo analysis comprising blood vessel density and characteristics such as shape and size. Cellular self-assembly into 3D-MTs led to a significant increase of vessel density mainly driven by a higher number of neo-capillary formation. In contrast, SC-seeded scaffolds displayed a higher frequency of larger neo-vessels resulting in an overall 1.76-fold higher total vessel area (TVA). Importantly, despite that larger TVA in SC-seeded group, the mean perfusion capacity (MPC) was comparable between groups, therefore suggesting functional superiority together with an enhanced perfusion efficacy of the neo-vessels in 3D-MT-seeded scaffolds. This was further underlined by a 1.64-fold higher perfusion ratio when relating MPC to TVA. Our study shows that cellular self-assembly of human cardiopoietic stem cells into 3D-MTs substantially enhances their overall angiogenic potential and their functional neovascularization capacity. Hence, the concept of 3D-MTs may be considered to increase the therapeutic efficacy of future cell therapy concepts.

Keywords

Cardiopoietic stem cells Angiogenesis Neovascularization Perfusion capacity Chorioallantoic membrane (CAM) assay Microtissues Three dimensional 

Abbreviations

2D

Two-dimensional

3D

Three-dimensional

3D-MT

Three-dimensional microtissue

AMI

Acute myocardial infarction

AR

Aspect ratio

BM

Bone marrow

CAM

Chorioallantoic membrane

CHF

Chronic heart failure

ECM

Extracellular matrix

H&E

Haematoxylin and eosin

hPL

Human platelet lysate

ID

Incubation day

LV

Left ventricular

MPC

Mean perfusion capacity

MRI

Magnetic resonance imaging

MSCs

Mesenchymal stem cells

ROIs

Regions of interest

SC

Single cell

SD

Standard deviations

SEM

Scanning electron microscope

VEGF

Vascular endothelial growth factor

TVA

Total vessel area

Notes

Acknowledgements

We thank Carol De Simio for her excellent graphical support (University Hospital Zurich, Switzerland). We additionally thank André Fitsche, Christiane Mittmann, Ursula Süss, and Pia Fuchs for great support on histological processing (Institute of Pathology and Department of Surgical Research, University Hospital Zurich, Switzerland). Fatma Kivrak Pfiffner is acknowledged for technical assistance with the handling of the eggs (Clinic for Plastic Surgery and Hand Surgery, University Hospital Zurich, Switzerland). We kindly thank Peter De Weale, Aymeric Seron, Dorothee Daro, and Sebastien Mauen (Celyad, Belgium) for generation of the GMP-grade human cardiopoietic stem cells.

Author contributions

PW, JB, and MYE designed experiments; PW, AB, AW, and JB performed experiments; PW, AB, JB, and MYE analyzed all data; YT injected contrast agent for MRI measurements; OE performed SEM; MH evaluated all histological sections; PW, AB, JB, and MYE wrote manuscript; PW, AB, AW, MH, PG, MC, SPH, JB, and MYE edited and discussed manuscript.

Funding

This work was supported by the Hartmann Müller-Foundation and the Swiss Heart Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Nelson TJ, Behfar A, Terzic A (2008) Strategies for therapeutic repair: the “R(3)” regenerative medicine paradigm. Clin Transl Sci 1:168–171CrossRefGoogle Scholar
  2. 2.
    Terzic A, Pfenning MA, Gores GJ, Harper CM Jr (2015) Regenerative medicine build-out. Stem Cells Transl Med 4:1373–1379CrossRefGoogle Scholar
  3. 3.
    Tsukamoto A, Abbot SE, Kadyk LC, DeWitt ND, Schaffer DV, Wertheim JA, Whittlesey KJ, Werner MJ (2016) Challenging regeneration to transform medicine. Stem Cells Transl Med 5:1–7CrossRefGoogle Scholar
  4. 4.
    Segers VF, Lee RT (2008) Stem-cell therapy for cardiac disease. Nature 451:937–942CrossRefGoogle Scholar
  5. 5.
    Cambria E, Pasqualini FS, Wolint P, Gunter J, Steiger J, Bopp A, Hoerstrup SP, Emmert MY (2017) Translational cardiac stem cell therapy: advancing from first-generation to next-generation cell types. NPJ Regen Med 2:17CrossRefGoogle Scholar
  6. 6.
    Behfar A, Terzic A (2014) Stem cell in the rough: repair quotient mined out of a bone marrow niche. Circ Res 115:814–816CrossRefGoogle Scholar
  7. 7.
    Gyongyosi M, Wojakowski W, Lemarchand P, Lunde K, Tendera M, Bartunek J, Marban E, Assmus B, Henry TD, Traverse JH, Moye LA, Surder D, Corti R, Huikuri H, Miettinen J, Wohrle J, Obradovic S, Roncalli J, Malliaras K, Pokushalov E, Romanov A, Kastrup J, Bergmann MW, Atsma DE, Diederichsen A, Edes I, Benedek I, Benedek T, Pejkov H, Nyolczas N, Pavo N, Bergler-Klein J, Pavo IJ, Sylven C, Berti S, Navarese EP, Maurer G, Investigators A (2015) Meta-Analysis of Cell-based CaRdiac stUdiEs (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circ Res 116:1346–1360CrossRefGoogle Scholar
  8. 8.
    Marban E, Malliaras K (2012) Mixed results for bone marrow-derived cell therapy for ischemic heart disease. JAMA 308:2405–2406CrossRefGoogle Scholar
  9. 9.
    Behfar A, Faustino RS, Arrell DK, Dzeja PP, Perez-Terzic C, Terzic A (2008) Guided stem cell cardiopoiesis: discovery and translation. J Mol Cell Cardiol 45:523–529CrossRefGoogle Scholar
  10. 10.
    Marban E, Malliaras K (2010) Boot camp for mesenchymal stem cells. J Am Coll Cardiol 56:735–737CrossRefGoogle Scholar
  11. 11.
    Behfar A, Yamada S, Crespo-Diaz R, Nesbitt JJ, Rowe LA, Perez-Terzic C, Gaussin V, Homsy C, Bartunek J, Terzic A (2010) Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. J Am Coll Cardiol 56:721–734CrossRefGoogle Scholar
  12. 12.
    Bartunek J, Behfar A, Dolatabadi D, Vanderheyden M, Ostojic M, Dens J, El Nakadi B, Banovic M, Beleslin B, Vrolix M, Legrand V, Vrints C, Vanoverschelde JL, Crespo-Diaz R, Homsy C, Tendera M, Waldman S, Wijns W, Terzic A (2013) Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics. J Am Coll Cardiol 61:2329–2338CrossRefGoogle Scholar
  13. 13.
    Bartunek J, Davison B, Sherman W, Povsic T, Henry TD, Gersh B, Metra M, Filippatos G, Hajjar R, Behfar A, Homsy C, Cotter G, Wijns W, Tendera M, Terzic A (2016) Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial design. Eur J Heart Fail 18:160–168CrossRefGoogle Scholar
  14. 14.
    Bartunek J, Terzic A, Davison BA, Filippatos GS, Radovanovic S, Beleslin B, Merkely B, Musialek P, Wojakowski W, Andreka P, Horvath IG, Katz A, Dolatabadi D, El Nakadi B, Arandjelovic A, Edes I, Seferovic PM, Obradovic S, Vanderheyden M, Jagic N, Petrov I, Atar S, Halabi M, Gelev VL, Shochat MK, Kasprzak JD, Sanz-Ruiz R, Heyndrickx GR, Nyolczas N, Legrand V, Guedes A, Heyse A, Moccetti T, Fernandez-Aviles F, Jimenez-Quevedo P, Bayes-Genis A, Hernandez-Garcia JM, Ribichini F, Gruchala M, Waldman SA, Teerlink JR, Gersh BJ, Povsic TJ, Henry TD, Metra M, Hajjar RJ, Tendera M, Behfar A, Alexandre B, Seron A, Stough WG, Sherman W, Cotter G, Wijns W, CHART Program (2017) Cardiopoietic cell therapy for advanced ischaemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial. Eur Heart J 38:648–660CrossRefGoogle Scholar
  15. 15.
    Emmert MY, Wolint P, Jakab A, Sheehy SP, Pasqualini FS, Nguyen TD, Hilbe M, Seifert B, Weber B, Brokopp CE, Macejovska D, Caliskan E, von Eckardstein A, Schwartlander R, Vogel V, Falk V, Parker KK, Gyongyosi M, Hoerstrup SP (2017) Safety and efficacy of cardiopoietic stem cells in the treatment of post-infarction left-ventricular dysfunction—from cardioprotection to functional repair in a translational pig infarction model. Biomaterials 122:48–62CrossRefGoogle Scholar
  16. 16.
    Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23:845–856CrossRefGoogle Scholar
  17. 17.
    Alrefai MT, Murali D, Paul A, Ridwan KM, Connell JM, Shum-Tim D (2015) Cardiac tissue engineering and regeneration using cell-based therapy. Stem Cells Cloning 8:81–101Google Scholar
  18. 18.
    Radisic M, Christman KL (2013) Materials science and tissue engineering: repairing the heart. Mayo Clin Proc 88:884–898CrossRefGoogle Scholar
  19. 19.
    Haraguchi Y, Shimizu T, Yamato M, Okano T (2012) Concise review: cell therapy and tissue engineering for cardiovascular disease. Stem Cells Transl Med 1:136–141CrossRefGoogle Scholar
  20. 20.
    Gunter J, Wolint P, Bopp A, Steiger J, Cambria E, Hoerstrup SP, Emmert MY (2016) Microtissues in cardiovascular medicine: regenerative potential based on a 3D microenvironment. Stem Cells Int 9098523Google Scholar
  21. 21.
    Alajati A, Laib AM, Weber H, Boos AM, Bartol A, Ikenberg K, Korff T, Zentgraf H, Obodozie C, Graeser R, Christian S, Finkenzeller G, Stark GB, Heroult M, Augustin HG (2008) Spheroid-based engineering of a human vasculature in mice. Nat Methods 5:439–445CrossRefGoogle Scholar
  22. 22.
    Bhang SH, Lee S, Shin JY, Lee TJ, Kim BS (2012) Transplantation of cord blood mesenchymal stem cells as spheroids enhances vascularization. Tissue Eng A 18:2138–2147CrossRefGoogle Scholar
  23. 23.
    Lee GH, Lee JS, Wang X, Lee SH (2016) Bottom-up engineering of well-defined 3D microtissues using microplatforms and biomedical applications. Adv Healthc Mater 5:56–74CrossRefGoogle Scholar
  24. 24.
    Metzger W, Sossong D, Bachle A, Putz N, Wennemuth G, Pohlemann T, Oberringer M (2011) The liquid overlay technique is the key to formation of co-culture spheroids consisting of primary osteoblasts, fibroblasts and endothelial cells. Cytotherapy 13:1000–1012CrossRefGoogle Scholar
  25. 25.
    Emmert MY, Wolint P, Wickboldt N, Gemayel G, Weber B, Brokopp CE, Boni A, Falk V, Bosman A, Jaconi ME, Hoerstrup SP (2013) Human stem cell-based three-dimensional microtissues for advanced cardiac cell therapies. Biomaterials 34:6339–6354CrossRefGoogle Scholar
  26. 26.
    Emmert MY, Wolint P, Winklhofer S, Stolzmann P, Cesarovic N, Fleischmann T, Nguyen TD, Frauenfelder T, Boni R, Scherman J, Bettex D, Grunenfelder J, Schwartlander R, Vogel V, Gyongyosi M, Alkadhi H, Falk V, Hoerstrup SP (2013) Transcatheter based electromechanical mapping guided intramyocardial transplantation and in vivo tracking of human stem cell based three dimensional microtissues in the porcine heart. Biomaterials 34:2428–2441CrossRefGoogle Scholar
  27. 27.
    Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J (2013) Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31:108–115CrossRefGoogle Scholar
  28. 28.
    Cheng NC, Wang S, Young TH (2012) The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials 33:1748–1758CrossRefGoogle Scholar
  29. 29.
    Emmert MY, Hitchcock RW, Hoerstrup SP (2014) Cell therapy, 3D culture systems and tissue engineering for cardiac regeneration. Adv Drug Deliv Rev 69–70:254–269CrossRefGoogle Scholar
  30. 30.
    Kim JH, Park IS, Park Y, Jung Y, Kim SH, Kim SH (2013) Therapeutic angiogenesis of three-dimensionally cultured adipose-derived stem cells in rat infarcted hearts. Cytotherapy 15:542–556CrossRefGoogle Scholar
  31. 31.
    Lee WY, Wei HJ, Lin WW, Yeh YC, Hwang SM, Wang JJ, Tsai MS, Chang Y, Sung HW (2011) Enhancement of cell retention and functional benefits in myocardial infarction using human amniotic-fluid stem-cell bodies enriched with endogenous ECM. Biomaterials 32:5558–5567CrossRefGoogle Scholar
  32. 32.
    Kapur SK, Wang X, Shang H, Yun S, Li X, Feng G, Khurgel M, Katz AJ (2012) Human adipose stem cells maintain proliferative, synthetic and multipotential properties when suspension cultured as self-assembling spheroids. Biofabrication 4:025004CrossRefGoogle Scholar
  33. 33.
    Kelm JM, Ehler E, Nielsen LK, Schlatter S, Perriard JC, Fussenegger M (2004) Design of artificial myocardial microtissues. Tissue Eng 10:201–214CrossRefGoogle Scholar
  34. 34.
    Oltolina F, Zamperone A, Colangelo D, Gregoletto L, Reano S, Pietronave S, Merlin S, Talmon M, Novelli E, Diena M, Nicoletti C, Musaro A, Filigheddu N, Follenzi A, Prat M (2015) Human cardiac progenitor spheroids exhibit enhanced engraftment potential. PLoS ONE 10:e0137999CrossRefGoogle Scholar
  35. 35.
    Tseliou E, Pollan S, Malliaras K, Terrovitis J, Sun B, Galang G, Marban L, Luthringer D, Marban E (2013) Allogeneic cardiospheres safely boost cardiac function and attenuate adverse remodeling after myocardial infarction in immunologically mismatched rat strains. J Am Coll Cardiol 61:1108–1119CrossRefGoogle Scholar
  36. 36.
    Murphy KC, Fang SY, Leach JK (2014) Human mesenchymal stem cell spheroids in fibrin hydrogels exhibit improved cell survival and potential for bone healing. Cell Tissue Res 357:91–99CrossRefGoogle Scholar
  37. 37.
    Adair TH, Montani JP (2010) Angiogenesis assays. In: Sciences MCL (ed) Angiogenesis. Morgan & Claypool Publishers, San RafaelGoogle Scholar
  38. 38.
    Goodwin AM (2007) In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents. Microvasc Res 74:172–183CrossRefGoogle Scholar
  39. 39.
    Ribatti D (2008) Chick embryo chorioallantoic membrane as a useful tool to study angiogenesis. Int Rev Cell Mol Bio 270:181–224CrossRefGoogle Scholar
  40. 40.
    Ribatti D, Vacca A, Roncali L, Dammacco F (1996) The chick embryo chorioallantoic membrane as a model for in vivo research on angiogenesis. Int J Dev Biol 40:1189–1197Google Scholar
  41. 41.
    Gokce G, Ozgurtas T, Sobaci G, Kucukevcilioglu M (2016) The effects of amphotericin B on angiogenesis in chick chorioallantoic membrane. Cutan Ocul Toxicol 35:92–96Google Scholar
  42. 42.
    Woloszyk A, Buschmann J, Waschkies C, Stadlinger B, Mitsiadis TA (2016) Human dental pulp stem cells and gingival fibroblasts seeded into silk fibroin scaffolds have the same ability in attracting vessels. Front Physiol 7:140Google Scholar
  43. 43.
    Borges J, Tegtmeier FT, Padron NT, Mueller MC, Lang EM, Stark GB (2003) Chorioallantoic membrane angiogenesis model for tissue engineering: a new twist on a classic model. Tissue Eng 9:441–450CrossRefGoogle Scholar
  44. 44.
    Staton CA, Reed MW, Brown NJ (2009) A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol 90:195–221CrossRefGoogle Scholar
  45. 45.
    Kivrak Pfiffner F, Waschkies C, Tian Y, Woloszyk A, Calcagni M, Giovanoli P, Rudin M, Buschmann J (2015) A new in vivo magnetic resonance imaging method to noninvasively monitor and quantify the perfusion capacity of three-dimensional biomaterials grown on the chorioallantoic membrane of chick embryos. Tissue Eng C 21:339–346CrossRefGoogle Scholar
  46. 46.
    Zuo Z, Syrovets T, Genze F, Abaei A, Ma G, Simmet T, Rasche V (2015) High-resolution MRI analysis of breast cancer xenograft on the chick chorioallantoic membrane. NMR Biomed 28:440–447CrossRefGoogle Scholar
  47. 47.
    GmbH M (2017) Optimaix scaffolds for cell culture researchGoogle Scholar
  48. 48.
    Waschkies C, Nicholls F, Buschmann J (2015) Comparison of medetomidine, thiopental and ketamine/midazolam anesthesia in chick embryos for in ovo Magnetic Resonance Imaging free of motion artifacts. Sci Rep 5:15536CrossRefGoogle Scholar
  49. 49.
    Kelm JM, Timmins NE, Brown CJ, Fussenegger M, Nielsen LK (2003) Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng 83:173–180CrossRefGoogle Scholar
  50. 50.
    Kastellorizios M, Papadimitrakopoulos F, Burgess DJ (2015) Multiple tissue response modifiers to promote angiogenesis and prevent the foreign body reaction around subcutaneous implants. J Controlled Release 214:103–111CrossRefGoogle Scholar
  51. 51.
    Dondossola E, Holzapfel BM, Alexander S, Filippini S, Hutmacher DW, Friedl P (2016) Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nat Biomed Eng 1Google Scholar
  52. 52.
    Logsdon EA, Finley SD, Popel AS, Mac Gabhann F (2014) A systems biology view of blood vessel growth and remodelling. J Cell Mol Med 18:1491–1508CrossRefGoogle Scholar
  53. 53.
    Silvestre JS, Levy BI, Tedgui A (2008) Mechanisms of angiogenesis and remodelling of the microvasculature. Cardiovasc Res 78:201–202CrossRefGoogle Scholar
  54. 54.
    Cambria E, Steiger J, Gunter J, Bopp A, Wolint P, Hoerstrup SP, Emmert MY (2016) Cardiac regenerative medicine: the potential of a new generation of stem cells. Transfus Med Hemother 43:275–281CrossRefGoogle Scholar
  55. 55.
    Teerlink JR, Metra M, Filippatos GS, Davison BA, Bartunek J, Terzic A, Gersh BJ, Povsic TJ, Henry TD, Alexandre B, Homsy C, Edwards C, Seron A, Wijns W, Cotter G, Investigators C (2017) Benefit of cardiopoietic mesenchymal stem cell therapy on left ventricular remodelling: results from the Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) study. Eur J Heart Fail 19:1520–1529CrossRefGoogle Scholar
  56. 56.
    Cochain C, Channon KM, Silvestre JS (2013) Angiogenesis in the infarcted myocardium. Antioxid Redox Signal 18:1100–1113CrossRefGoogle Scholar
  57. 57.
    Vilahur G, Onate B, Cubedo J, Bejar MT, Arderiu G, Pena E, Casani L, Gutierrez M, Capdevila A, Pons-Llado G, Carreras F, Hidalgo A, Badimon L (2017) Allogenic adipose-derived stem cell therapy overcomes ischemia-induced microvessel rarefaction in the myocardium: systems biology study. Stem Cell Res Ther 8:52CrossRefGoogle Scholar
  58. 58.
    Ji ST, Kim H, Yun J, Chung JS, Kwon SM (2017) Promising therapeutic strategies for mesenchymal stem cell-based cardiovascular regeneration: from cell priming to tissue engineering. Stem Cells Int 2017:3945403Google Scholar
  59. 59.
    Spyridopoulos I, Arthur HM (2017) Microvessels of the heart: formation, regeneration, and dysfunction. Microcirculation. 24:e12338CrossRefGoogle Scholar
  60. 60.
    Zhang H, Zhu SJ, Wang W, Wei YJ, Hu SS (2008) Transplantation of microencapsulated genetically modified xenogeneic cells augments angiogenesis and improves heart function. Gene Ther 15:40–48CrossRefGoogle Scholar
  61. 61.
    Behfar A, Crespo-Diaz R, Terzic A, Gersh BJ (2014) Cell therapy for cardiac repair—lessons from clinical trials. Nat Rev Cardiol 11:232–246CrossRefGoogle Scholar
  62. 62.
    Behfar A, Terzic A (2006) Derivation of a cardiopoietic population from human mesenchymal stem cells yields cardiac progeny. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S78–S82CrossRefGoogle Scholar
  63. 63.
    Birchler A, Berger M, Jaggin V, Lopes T, Etzrodt M, Misun PM, Pena-Francesch M, Schroeder T, Hierlemann A, Frey O (2016) Seamless combination of fluorescence-activated cell sorting and hanging-drop networks for individual handling and culturing of stem cells and microtissue spheroids. Anal Chem 88:1222–1229CrossRefGoogle Scholar
  64. 64.
    Declercq HA, De Caluwe T, Krysko O, Bachert C, Cornelissen MJ (2013) Bone grafts engineered from human adipose-derived stem cells in dynamic 3D-environments. Biomaterials 34:1004–1017CrossRefGoogle Scholar
  65. 65.
    Dissanayaka WL, Zhu L, Hargreaves KM, Jin L, Zhang C (2014) Scaffold-free prevascularized microtissue spheroids for pulp regeneration. J Dent Res 93:1296–1303CrossRefGoogle Scholar
  66. 66.
    Laschke MW, Schank TE, Scheuer C, Kleer S, Schuler S, Metzger W, Eglin D, Alini M, Menger MD (2013) Three-dimensional spheroids of adipose-derived mesenchymal stem cells are potent initiators of blood vessel formation in porous polyurethane scaffolds. Acta Biomater 9:6876–6884CrossRefGoogle Scholar
  67. 67.
    Jakob W, Jentzsch KD, Mauersberger B, Heder G (1978) The chick embryo choriallantoic membrane as a bioassay for angiogenesis factors: reactions induced by carrier materials. Exp Pathol 15:241–249Google Scholar
  68. 68.
    Ribatti D (2010) The chick embryo chorioallantoic membrane in the study of angiogenesis and metastasis concluding remarks. Springer, Dordrecht, pp 87–88CrossRefGoogle Scholar
  69. 69.
    Spanelborowski K, Schnapper U, Heymer B (1988) The chick chorioallantoic membrane assay in the assessment of angiogenic factors. Biomed Res 9:253–260CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Petra Wolint
    • 1
  • Annina Bopp
    • 1
    • 2
  • Anna Woloszyk
    • 1
    • 2
  • Yinghua Tian
    • 1
    • 3
  • Olivera Evrova
    • 1
    • 4
    • 5
  • Monika Hilbe
    • 6
  • Pietro Giovanoli
    • 1
    • 5
  • Maurizio Calcagni
    • 1
    • 5
  • Simon P. Hoerstrup
    • 2
    • 7
    Email author
  • Johanna Buschmann
    • 1
    • 5
  • Maximilian Y. Emmert
    • 2
    • 7
    • 8
    Email author
  1. 1.Division of Surgical ResearchUniversity Hospital of ZurichZurichSwitzerland
  2. 2.Institute for Regenerative Medicine (IREM)University of ZurichZurichSwitzerland
  3. 3.Visceral and Transplant SurgeryUniversity Hospital ZurichZurichSwitzerland
  4. 4.Laboratory of Applied MechanobiologyETH ZurichZurichSwitzerland
  5. 5.Plastic Surgery and Hand SurgeryUniversity Hospital ZurichZurichSwitzerland
  6. 6.Institute of Veterinary PathologyUniversity of ZurichZurichSwitzerland
  7. 7.Wyss Translational Center ZurichUniversity Zurich & ETH ZurichZurichSwitzerland
  8. 8.University Heart CenterUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations