Advertisement

Angiogenesis

, Volume 20, Issue 4, pp 443–462 | Cite as

Endothelial progenitor cells in multiple myeloma neovascularization: a brick to the wall

  • Maria Margarida Tenreiro
  • Maria Leonor Correia
  • Maria Alexandra Brito
Review Paper

Abstract

Multiple myeloma (MM) is characterized by the clonal expansion of plasma cells in the bone marrow that leads to events such as bone destruction, anaemia and renal failure. Despite the several therapeutic options available, there is still no effective cure, and the standard survival is up to 4 years. The evolution from the asymptomatic stage of monoclonal gammopathy of undetermined significance to MM and the progression of the disease itself are related to cellular and molecular alterations in the bone marrow microenvironment, including the development of the vasculature. Post-natal vasculogenesis is characterized by the recruitment to the tumour vasculature of bone marrow progenitors, known as endothelial progenitor cells (EPCs), which incorporate newly forming blood vessels and differentiate into endothelial cells. Several processes related to EPCs, such as recruitment, mobilization, adhesion and differentiation, are tightly controlled by cells and molecules in the bone marrow microenvironment. In this review, the bone marrow microenvironment and the mechanisms associated to the development of the neovasculature promoted by EPCs are discussed in detail in both a non-pathological scenario and in MM. The latest developments in therapy targeting the vasculature and EPCs in MM are also highlighted. The identification and characterization of the pathways relevant to the complex setting of MM are of utter importance to identify not only biomarkers for an early diagnosis and disease progression monitoring, but also to reveal intervention targets for more effective therapy directed to cancer cells and the endothelial mediators relevant to neovasculature development.

Keywords

Multiple myeloma Monoclonal gammopathy of undetermined significance Bone marrow Angiogenesis Vasculogenesis Endothelial progenitor cells 

Notes

Acknowledgements

The authors thank the Portuguese Foundation for Science and Technology, Portugal, for the award of the Strategic Project to iMed.ULisboa (UID/DTP/04138/2013).

References

  1. 1.
    Anthony B, Link DC (2014) Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends Immunol 35:32–37. doi: 10.1016/j.it.2013.10.002 PubMedCrossRefGoogle Scholar
  2. 2.
    Wickramasinghe SN, Porwit A, Erber WN (2011) Normal bone marrow cells. In: Blood and bone marrow pathology, 2nd edn. Elsevier, pp 19–44. doi: 10.1016/b978-0-7020-3147-2.00002-x
  3. 3.
    Iversen PO (1997) Blood flow to the haemopoietic bone marrow. Acta Physiol Scand 159:169–276. doi: 10.1046/j.1365-201X.1997.00107.x CrossRefGoogle Scholar
  4. 4.
    Rajkumar SV (2014) Multiple myeloma: 2014 update on diagnosis, risk- stratification, and management. Am J Hematol 89:999–1009. doi: 10.1002/ajh.23810 CrossRefGoogle Scholar
  5. 5.
    Kyle RA, Rajkumar SV (2008) Multiple myeloma. Blood 111:2962–2972. doi: 10.1182/blood-2007-10-078022 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Giuliani N, Storti P, Bolzoni M, Palma BD, Bonomini S (2011) Angiogenesis and multiple myeloma. Cancer Microenviron 4:325–337. doi: 10.1007/s12307-011-0072-9 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Caiado F, Dias S (2012) Endothelial progenitor cells and integrins: adhesive needs. Fibrogenesis Tissue Repair 5:4. doi: 10.1186/1755-1536-5-4 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Nemeth K, Mezey E (2015) Bone marrow stromal cells as immunomodulators. A primer for dermatologists. J Dermatol Sci 77:11–20. doi: 10.1016/j.jdermsci.2014.10.004 PubMedCrossRefGoogle Scholar
  9. 9.
    Klamer S, Voermans C (2014) The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment. Cell Adhes Migr 8:563–577. doi: 10.4161/19336918.2014.968501 CrossRefGoogle Scholar
  10. 10.
    Romano A, Conticello C, Cavalli M, Vetro C, La Fauci A, Parrinello NL, Di Raimondo F (2014) Immunological dysregulation in multiple myeloma microenvironment. Biomed Res Int 2014:198539. doi: 10.1155/2014/198539 PubMedPubMedCentralGoogle Scholar
  11. 11.
    Krause DS (2002) Regulation of hematopoietic stem cell fate. Oncogene 21:3262–3269. doi: 10.1038/sj/onc/1205316 PubMedCrossRefGoogle Scholar
  12. 12.
    Balderman SR, Calvi LM (2014) Biology of marrow failure syndromes: role of microenvironment and niches. Hematol Am Soc Hematol Educ Program 2014:71–76. doi: 10.1182/asheducation-2014.1.71 Google Scholar
  13. 13.
    Guerrouahen BS, Al-Hijji I, Tabrizi AR (2011) Osteoblastic and vascular endothelial niches, their control on normal hematopoietic stem cells, and their consequences on the development of leukemia. Stem Cells Int 2011:375857. doi: 10.4061/2011/375857 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Bydlowski S, Levy D, Ruiz J, Pereira J (2013) Hematopoietic stem cell niche: role in normal and malignant hematopoiesis. In: Alimoghaddam K (ed) Stem cell biology in normal life and diseases, 1st edn. InTech, Rijeka, pp 18–31. doi: 10.5772/55508 Google Scholar
  15. 15.
    Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D, Perko K, Alexander R, Schwartz J, Grindley JC, Park J, Haug JS, Wunderlich JP, Li H, Zhang S, Johnson T, Feldman RA, Li L (2009) Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 457:97–101. doi: 10.1038/nature07639 PubMedCrossRefGoogle Scholar
  16. 16.
    Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT, Bertoncello I, Bendall LJ, Simmons PJ, Haylock DN (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106:1232–1239. doi: 10.1182/blood-2004-11-4422 PubMedCrossRefGoogle Scholar
  17. 17.
    Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:149–161. doi: 10.1016/j.cell.2004.07.004 PubMedCrossRefGoogle Scholar
  18. 18.
    Battiwalla M, Hematti P (2009) Mesenchymal stem cells in hematopoietic stem cell transplantation. Cytotherapy 11:503–515. doi: 10.1080/14653240903193806 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834. doi: 10.1038/nature09262 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Lo Celso C, Fleming HE, Wu JW, Zhao CX, Miake-Lye S, Fujisaki J, Cote D, Rowe DW, Lin CP, Scadden DT (2009) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457:92–96. doi: 10.1038/nature07434 PubMedCrossRefGoogle Scholar
  21. 21.
    Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y, Tesio M, Samstein RM, Goichberg P, Spiegel A, Elson A, Lapidot T (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 12:657–664. doi: 10.1038/nm1417 PubMedCrossRefGoogle Scholar
  22. 22.
    Marenzana M, Arnett TR (2013) The key role of the blood supply to bone. Bone Res 1:203–215. doi: 10.4248/BR201303001 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Itkin T, Gur-Cohen S, Spencer JA, Schajnovitz A, Ramasamy SK, Kusumbe AP, Ledergor G, Jung Y, Milo I, Poulos MG, Kalinkovich A, Ludin A, Kollet O, Shakhar G, Butler JM, Rafii S, Adams RH, Scadden DT, Lin CP, Lapidot T (2016) Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532:323–328. doi: 10.1038/nature17624 PubMedCrossRefGoogle Scholar
  24. 24.
    Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K, Mar JC, Bergman A, Frenette PS (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502:637–643. doi: 10.1038/nature12612 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977–988. doi: 10.1016/j.immuni.2006.10.016 PubMedCrossRefGoogle Scholar
  26. 26.
    Sá-Pereira I, Brites D, Brito MA (2012) Neurovascular unit: a focus on pericytes. Mol Neurobiol 45:327–347. doi: 10.1007/s12035-012-8244-2 PubMedCrossRefGoogle Scholar
  27. 27.
    Jacob MP, Badier-Commander C, Fontaine V, Benazzoug Y, Feldman L, Michel JB (2001) Extracellular matrix remodeling in the vascular wall. Pathol Biol (Paris) 49:326–332. doi: 10.1016/S0369-8114(01)00151-1 CrossRefGoogle Scholar
  28. 28.
    Charpentier MS, Conlon FL (2014) Cellular and molecular mechanisms underlying blood vessel lumen formation. BioEssays 36:251–259. doi: 10.1002/bies.201300133 PubMedCrossRefGoogle Scholar
  29. 29.
    Morales-Ruiz M, Jiménez W (2005) Neovascularization, angiogenesis, and vascular remodeling in portal hypertension. In: Sanyal AJ, Shah VH (eds) Clinical gastroenterology: portal hypertension. Humana Press Inc., Totowa, pp 99–112. doi: 10.1007/978-1-59259-885-4_7 CrossRefGoogle Scholar
  30. 30.
    Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228. doi: 10.1161/01.RES.85.3.221 PubMedCrossRefGoogle Scholar
  31. 31.
    Papetti M, Herman IM (2002) Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 282:C947–C970. doi: 10.1152/ajpcell.00389.2001 PubMedCrossRefGoogle Scholar
  32. 32.
    Griffioen AW (2012) Angiogenesis. In: Schwab M (ed) Encyclopedia of cancer, vol 1, 3rd edn. Springer, Berlin, pp 185–186Google Scholar
  33. 33.
    Otjacques E, Binsfeld M, Noel A, Beguin Y, Cataldo D, Caers J (2011) Biological aspects of angiogenesis in multiple myeloma. Int J Hematol 94:505–518. doi: 10.1007/s12185-011-0963-z PubMedCrossRefGoogle Scholar
  34. 34.
    Jakob C, Sterz J, Zavrski I, Heider U, Kleeberg L, Fleissner C, Kaiser M, Sezer O (2006) Angiogenesis in multiple myeloma. Eur J Cancer 42:1581–1590. doi: 10.1016/j.ejca.2006.02.017 PubMedCrossRefGoogle Scholar
  35. 35.
    Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967. doi: 10.1126/science.275.5302.964 PubMedCrossRefGoogle Scholar
  36. 36.
    Laurenzana A, Fibbi G, Margheri F, Biagioni A, Luciani C, Del Rosso M, Chillà A (2015) Endothelial progenitor cells in sprouting angiogenesis: proteases pave the way. Curr Mol Med 15:606–620. doi: 10.2174/1566524015666150831131214 PubMedCrossRefGoogle Scholar
  37. 37.
    Murayama T, Tepper OM, Silver M, Ma H, Losordo DW, Isner JM, Asahara T, Kalka C (2002) Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol 30:967–972. doi: 10.1016/S0301-472X(02)00867-6 PubMedCrossRefGoogle Scholar
  38. 38.
    Moschetta M, Mishima Y, Sahin I, Manier S, Glavey S, Vacca A, Roccaro AM, Ghobrial IM (2014) Role of endothelial progenitor cells in cancer progression. Biochim Biophys Acta 1846:26–39. doi: 10.1016/j.bbcan.2014.03.005 PubMedGoogle Scholar
  39. 39.
    Tenreiro MM, Ferreira R, Bernardino L, Brito MA (2016) Cellular response of the blood-brain barrier to injury: potential biomarkers and therapeutic targets for brain regeneration. Neurobiol Dis 91:262–273. doi: 10.1016/j.nbd.2016.03.014 PubMedCrossRefGoogle Scholar
  40. 40.
    Balaji S, King A, Crombleholme TM, Keswani SG (2013) The role of endothelial progenitor cells in postnatal vasculogenesis: implications for therapeutic neovascularization and wound healing. Adv Wound Care (New Rochelle) 2:283–295. doi: 10.1089/wound.2012.0398 CrossRefGoogle Scholar
  41. 41.
    Velazquez OC (2007) Angiogenesis and vasculogenesis: inducing the growth of new blood vessels and wound healing by stimulation of bone marrow-derived progenitor cell mobilization and homing. J Vasc Surg 45:39–47. doi: 10.1016/j.jvs.2007.02.068 CrossRefGoogle Scholar
  42. 42.
    Kovacic JC, Moore J, Herbert A, Ma D, Boehm M, Graham RM (2008) Endothelial progenitor cells, angioblasts, and angiogenesis–old terms reconsidered from a current perspective. Trends Cardiovasc Med 18:45–51. doi: 10.1016/j.tcm.2007.12.002 PubMedCrossRefGoogle Scholar
  43. 43.
    Yoder MC (2012) Human endothelial progenitor cells. Cold Spring Harb Perspect Med 2:1–14. doi: 10.1101/cshperspect.a006692 CrossRefGoogle Scholar
  44. 44.
    Asahara T, Kawamoto A (2004) Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol 287:C572–C579. doi: 10.1152/ajpcell.00330.2003 CrossRefGoogle Scholar
  45. 45.
    De Val S, Black B (2009) Transcriptional control of endothelial cell development. Dev Cell 16:180–195. doi: 10.1016/j.devcel.2009.01.014 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Song E, Lu C-W, Fang L-J, Yang W (2010) Culture and identification of endothelial progenitor cells from human umbilical cord blood. Int J Ophthalmol 3:49–53. doi: 10.3980/j.issn.2222-3959.2010.01.11 PubMedPubMedCentralGoogle Scholar
  47. 47.
    Eggermann J, Kliche S, Jarmy G, Hoffmann K, Mayr-Beyrle U, Debatin KM, Waltenberger J, Beltinger C (2003) Endothelial progenitor cell culture and differentiation in vitro: a methodological comparison using human umbilical cord blood. Cardiovasc Res 58:478–486. doi: 10.1016/S0008-6363(03)00252-9 PubMedCrossRefGoogle Scholar
  48. 48.
    Amini AR, Laurencin CT, Nukavarapu SP (2012) Differential analysis of peripheral blood- and bone marrow-derived endothelial progenitor cells for enhanced vascularization in bone tissue engineering. J Orthop Res 30:1507–1515. doi: 10.1002/jor.22097 PubMedCrossRefGoogle Scholar
  49. 49.
    Yang J, Ii M, Kamei N, Alev C, Kwon SM, Kawamoto A, Akimaru H, Masuda H, Sawa Y, Asahara T (2011) CD34+ cells represent highly functional endothelial progenitor cells in murine bone marrow. PLoS ONE 6:e20219. doi: 10.1371/journal.pone.0020219 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Ria R, Piccoli C, Cirulli T, Falzetti F, Mangialardi G, Guidolin D, Tabilio A, Di Renzo N, Guarini A, Ribatti D, Dammacco F, Vacca A (2008) Endothelial differentiation of hematopoietic stem and progenitor cells from patients with multiple myeloma. Clin Cancer Res 14:1678–1685. doi: 10.1158/1078-0432.CCR-07-4071 PubMedCrossRefGoogle Scholar
  51. 51.
    Shi Q, VandeBerg JL (2015) Experimental approaches to derive CD34+ progenitors from human and nonhuman primate embryonic stem cells. Am J Stem Cells 4:32–37PubMedPubMedCentralGoogle Scholar
  52. 52.
    Fadini GP, Baesso I, Albiero M, Sartore S, Agostini C, Avogaro A (2008) Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis 197:496–503. doi: 10.1016/j.atherosclerosis.2007.12.039 PubMedCrossRefGoogle Scholar
  53. 53.
    Case J, Mead LE, Bessler WK, Prater D, Ha White, Saadatzadeh MR, Bhavsar JR, Yoder MC, Haneline LS, Da Ingram (2007) Human CD34+ AC133+ VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol 35:1109–1118. doi: 10.1016/j.exphem.2007.04.002 PubMedCrossRefGoogle Scholar
  54. 54.
    Timmermans F, Van Hauwermeiren F, De Smedt M, Raedt R, Plasschaert F, De Buyzere ML, Gillebert TC, Plum J, Vandekerckhove B (2007) Endothelial outgrowth cells are not derived from CD133+ Cells or CD45+ hematopoietic precursors. Arterioscler Thromb Vasc 27:1572–1579. doi: 10.1161/ATVBAHA.107.144972 CrossRefGoogle Scholar
  55. 55.
    Shmelkov SV, St Clair R, Lyden D, Rafii S (2005) AC133/CD133/Prominin-1. Int J Biochem Cell B 37:715–719. doi: 10.1016/j.biocel.2004.08.010 CrossRefGoogle Scholar
  56. 56.
    Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Ma Moore, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–958PubMedGoogle Scholar
  57. 57.
    Trowbridge IS, Thomas ML (1994) CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu Rev Immunol 12:85–116. doi: 10.1146/annurev.iy.12.040194.000505 PubMedCrossRefGoogle Scholar
  58. 58.
    Kalinowska A, Losy J (2006) PECAM-1, a key player in neuroinflammation. Eur J Neurol 13:1284–1290. doi: 10.1111/j.1468-1331.2006.01640.x PubMedCrossRefGoogle Scholar
  59. 59.
    Bardin N, Anfosso F, Massé JM, Cramer E, Sabatier F, Bivic AL, Sampol J, Dignat-George F (2001) Identification of CD146 as a component of the endothelial junction involved in the control of cell-cell cohesion. Blood 98:3677–3684. doi: 10.1182/blood.V98.13.3677 PubMedCrossRefGoogle Scholar
  60. 60.
    Ley K (2003) The role of selectins in inflammation and disease. Trends Mol Med 9:263–268. doi: 10.1016/S1471-4914(03)00071-6 PubMedCrossRefGoogle Scholar
  61. 61.
    Banks RE, Gearing AJ, Hemingway IK, Norfolk DR, Perren TJ, Selby PJ (1993) Circulating intercellular adhesion molecule-1 (ICAM-1), E-selectin and vascular cell adhesion molecule-1 (VCAM-1) in human malignancies. Br J Cancer 68:122–124PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Osborn L, Hession C, Tizard R, Vassallo C, Luhowskyj S, Chi-Rosso G, Lobb R (1989) Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 59:1203–1211. doi: 10.1016/0092-8674(89)90775-7 PubMedCrossRefGoogle Scholar
  63. 63.
    Vestweber D (2008) VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc 28:223–232. doi: 10.1161/ATVBAHA.107.158014 CrossRefGoogle Scholar
  64. 64.
    Schnürch H, Risau W (1993) Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage. Development 119:957–968PubMedGoogle Scholar
  65. 65.
    Cananzi M, De Coppi P (2012) CD117+ amniotic fluid stem cells: state of the art and future perspectives. Organogenesis 8:77–88. doi: 10.4161/org.22426 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Nocka K, Buck J, Levi E, Besmer P (1990) Candidate ligand for the c-kit transmembrane kinase receptor: kL, a fibroblast derived growth factor stimulates mast cells and erythroid progenitors. EMBO J 9:3287–3294PubMedPubMedCentralGoogle Scholar
  67. 67.
    Lau MYZ, Dharmage SC, Burgess JA, Lowe AJ, Lodge CJ, Campbell B, Matheson MC (2014) CD14 polymorphisms, microbial exposure and allergic diseases: a systematic review of gene-environment interactions. Allergy 69:1440–1453. doi: 10.1111/all.12454 PubMedCrossRefGoogle Scholar
  68. 68.
    Cheifetz S, Bellón T, Calés C, Vera S, Bernabeu C, Massagué J, Letarte M (1992) Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J Biol Chem 267:19027–19030PubMedGoogle Scholar
  69. 69.
    Lenting PJ, Christophe OD (2015) von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood 125:2019–2028. doi: 10.1182/blood-2014-06-528406 PubMedCrossRefGoogle Scholar
  70. 70.
    Kucia M, Jankowski K, Reca R, Wysoczynski M, Bandura L, Allendorf DJ, Zhang J, Ratajczak J, Ratajczak MZ (2004) CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol 35:233–245. doi: 10.1023/B:HIJO.0000032355.66152.b8 PubMedCrossRefGoogle Scholar
  71. 71.
    Quirici N, Soligo D, Caneva L, Servida F, Bossolasco P, Deliliers GL, Matarelli F, Fatebenefratelli O, Marrow B, Unit T, Maggiore O (2001) Differentiation and expansion of endothelial cells from human bone marrow CD133+ cells. Br J Haematol 115:186–194. doi: 10.1046/j.1365-2141.2001.03077.x PubMedCrossRefGoogle Scholar
  72. 72.
    Rohde E, Malischnik C, Thaler D, Maierhofer T, Linkesch W, Lanzer G, Guelly C, Strunk D (2006) Blood monocytes mimic endothelial progenitor cells. Stem Cells 24:357–367. doi: 10.1634/stemcells.2005-0072 PubMedCrossRefGoogle Scholar
  73. 73.
    Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809. doi: 10.1182/blood-2006-08-043471.An PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC (2004) Identifcation of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760. doi: 10.1182/blood-2004-04-1396 PubMedCrossRefGoogle Scholar
  75. 75.
    Medina RJ, O’Neill CL, Sweeney M, Guduric-Fuchs J, Gardiner TA, Simpson DA, Stitt AW (2010) Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities. BMC Med Genomics 3:18. doi: 10.1186/1755-8794-3-18 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Wara AK, Croce K, Foo S, Sun X, Icli B, Tesmenitsky Y, Esen F, Rosenzweig A, Feinberg MW (2011) Bone marrow-derived CMPs and GMPs represent highly functional proangiogenic cells: implications for ischemic cardiovascular disease. Blood 118:6461–6464. doi: 10.1182/blood-2011-06-363457 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Anghelina M, Krishnan P, Moldovan L, Moldovan NI (2006) Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair. Am J Pathol 168:529–541. doi: 10.2353/ajpath.2006.050255 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Pearson JD (2010) Endothelial progenitor cells-an evolving story. Microvasc Res 79:162–168. doi: 10.1016/j.mvr.2009.12.004 PubMedCrossRefGoogle Scholar
  79. 79.
    Bianchi G, Anderson KC (2014) Understanding biology to tackle the disease: multiple myeloma from bench to bedside, and back. CA Cancer J Clin 64:422–444. doi: 10.3322/caac.21252 PubMedCrossRefGoogle Scholar
  80. 80.
    Kyle RA (1978) Monoclonal gammopathy of undetermined significance. Natural history in 241 cases. Am J Med 64:814–826. doi: 10.1016/0002-9343(78)90522-3 PubMedCrossRefGoogle Scholar
  81. 81.
    Kyle RA, Therneau TM, Rajkumar SV, Offord JR, Larson DR, Plevak MF, Melton L Jr (2002) A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med 346:564–569. doi: 10.1056/NEJMoa01133202 PubMedCrossRefGoogle Scholar
  82. 82.
    Kyle RA, Greipp PR (1980) Smoldering multiple myeloma. N Engl J Med 302:1347–1749. doi: 10.1056/NEJM198006123022405 PubMedCrossRefGoogle Scholar
  83. 83.
    Kyle RA, Rajkumar SV (2006) Monoclonal gammopathy of undetermined significance. Br J Haematol 134:573–589. doi: 10.1111/j.1365-2141.2006.06235.x PubMedCrossRefGoogle Scholar
  84. 84.
    Heider U, Fleissner C, Zavrski I, Kaiser M, Hecht M, Jakob C, Sezer O (2006) Bone markers in multiple myeloma. Eur J Cancer 42:1544–1553. doi: 10.1016/j.ejca.2005.11.034 PubMedCrossRefGoogle Scholar
  85. 85.
    Rajshenkhar C, Shaji K (2015) Risk stratification in multiple myeloma. Ann Hematol Oncol 2:1046Google Scholar
  86. 86.
    Kastritis E, Terpos E, Moulopoulos L, Spyropoulou-Vlachou M, Kanellias N, Eleftherakis-Papaiakovou E, Gkotzamanidou M, Migkou M, Gavriatopoulou M, Roussou M, Tasidou A, Dimopoulos MA (2013) Extensive bone marrow infiltration and abnormal free light chain ratio identifies patients with asymptomatic myeloma at high risk for progression to symptomatic disease. Leukemia 27:947–953. doi: 10.1038/leu.2012.309 PubMedCrossRefGoogle Scholar
  87. 87.
    Landgren O, Morgan GJ (2014) Biologic frontiers in multiple myeloma: from biomarker identification to clinical practice. Clin Cancer Res 20:804–813. doi: 10.1158/1078-0432.CCR-13-2159 PubMedCrossRefGoogle Scholar
  88. 88.
    Kyle RA (1983) Long-term survival in multiple myeloma. N Engl J Med 308:314–316. doi: 10.1056/NEJM198302103080604 PubMedCrossRefGoogle Scholar
  89. 89.
    Chng WJ, Dispenzieri A, Chim CS, Fonseca R, Goldschmidt H, Lentzsch S, Munshi N, Palumbo A, Miguel JS, Sonneveld P, Cavo M, Usmani S, Durie BG, Avet-Loiseau H, International Myeloma Working G (2014) IMWG consensus on risk stratification in multiple myeloma. Leukemia 28:269–277. doi: 10.1038/leu.2013.247 PubMedCrossRefGoogle Scholar
  90. 90.
    Gentile M, Offidani M, Vigna E, Corvatta L, Recchia AG, Morabito L, Martino M, Morabito F, Gentili S (2015) Smoldering multiple myeloma: to treat or not to treat. Expert Opin Pharmacother 16:1–6CrossRefGoogle Scholar
  91. 91.
    Rajkumar SV, Landgren O, Mateos MV (2015) Smoldering multiple myeloma. Blood 125:3069–3075. doi: 10.1182/blood-2014-09-568899 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Ghobrial IM, Landgren O (2014) How I treat smoldering multiple myeloma. Blood 124:3380–3388. doi: 10.1182/blood-2009-07-204651 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Kurtin SE (2013) Relapsed or relapsed/refractory multiple myeloma. J Adv Pract Oncol 4:5–14Google Scholar
  94. 94.
    Wallace SR, Oken MM, Lunetta KL, Panoskaltsis-Mortari A, Masellis AM (2001) Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. Cancer 91:1219–1230PubMedCrossRefGoogle Scholar
  95. 95.
    Corre J, Mahtouk K, Attal M, Gadelorge M, Huynh A, Fleury-Cappellesso S, Danho C, Laharrague P, Klein B, Rème T, Bourin P (2007) Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 21:1079–1088. doi: 10.1038/sj.leu.2404621 PubMedPubMedCentralGoogle Scholar
  96. 96.
    Attar-Schneider O, Zismanov V, Dabbah M, Tartakover-Matalon S, Drucker L, Lishner M (2015) Multiple myeloma and bone marrow mesenchymal stem cells’ crosstalk: effect on translation initiation. Mol Carcinog 55:1343–1354. doi: 10.1002/mc.22378 PubMedCrossRefGoogle Scholar
  97. 97.
    Feng Y, Wen J, Mike P, Choi DS, Eshoa C, Shi ZZ, Zu Y, Chang CC (2010) Bone marrow stromal cells from myeloma patients support the growth of myeloma stem cells. Stem Cells Dev 19:1289–1296. doi: 10.1089/scd.2010.0010 PubMedCrossRefGoogle Scholar
  98. 98.
    Walker RE, Lawson MA, Buckle CH, Snowden JA, Chantry AD (2014) Myeloma bone disease: pathogenesis, current treatments and future targets. Br Med Bull 111:117–138. doi: 10.1093/bmb/ldu016 PubMedCrossRefGoogle Scholar
  99. 99.
    Kristensen IB, Christensen JH, Lyng MB, Moller MB, Pedersen L, Rasmussen LM, Ditzel HJ, Abildgaard N (2014) Expression of osteoblast and osteoclast regulatory genes in the bone marrow microenvironment in multiple myeloma: only up-regulation of Wnt inhibitors SFRP3 and DKK1 is associated with lytic bone disease. Leuk Lymphoma 55:911–919. doi: 10.3109/10428194.2013.820288 PubMedCrossRefGoogle Scholar
  100. 100.
    Lawson MA, McDonald MM, Kovacic N, Hua Khoo W, Terry RL, Down J, Kaplan W, Paton-Hough J, Fellows C, Pettitt JA, Neil Dear T, Van Valckenborgh E, Baldock PA, Rogers MJ, Eaton CL, Vanderkerken K, Pettit AR, Quinn JM, Zannettino AC, Phan TG, Croucher PI (2015) Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat Commun 6:8983. doi: 10.1038/ncomms9983 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Vacca A, Ribatti D, Presta M, Minischetti M, Iurlaro M, Ria R, Albini A, Bussolino F, Dammacco F (1999) Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 93:3064–3073PubMedGoogle Scholar
  102. 102.
    Calcinotto A, Ponzoni M, Ria R, Grioni M, Cattaneo E, Villa I, Sabrina Bertilaccio MT, Chesi M, Rubinacci A, Tonon G, Bergsagel PL, Vacca A, Bellone M (2015) Modifications of the mouse bone marrow microenvironment favor angiogenesis and correlate with disease progression from asymptomatic to symptomatic multiple myeloma. Oncoimmunology 4:e1008850. doi: 10.1080/2162402X.2015.1008850 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Di Raimondo F, Azzaro MP, Palumbo GA, Bagnato S, Giustolisi G, Floridia PM, Sortino G, Giustolisi R (2000) Angiogenic factors in multiple myeloma: higher levels in bone marrow than in peripheral blood. Haematologica 85:800–805PubMedGoogle Scholar
  104. 104.
    Lee N, Lee H, Moon SY, Sohn JY, Hwang SM, Yoon OJ, Youn HS, Eom HS, Kong SY (2015) Adverse prognostic impact of bone marrow microvessel density in multiple myeloma. Ann Lab Med 35:563–569. doi: 10.3343/alm.2015.35.6.563 PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Vacca A, Ribatti D, Roncali L, Ranieri G, Serio G, Silvestris F, Dammacco F (1994) Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 87:503–508. doi: 10.1111/j.1365-2141.1994.tb08304.x PubMedCrossRefGoogle Scholar
  106. 106.
    Bellamy WT (2001) Expression of vascular endothelial growth factor and its receptors in multiple myeloma and other hematopoietic malignancies. Semin Oncol 28:551–559PubMedCrossRefGoogle Scholar
  107. 107.
    Kumar S, Witzig TE, Timm M, Haug J, Wellik L, Kimlinger TK, Greipp PR, Rajkumar SV (2004) Bone marrow angiogenic ability and expression of angiogenic cytokines in myeloma: evidence favoring loss of marrow angiogenesis inhibitory activity with disease progression. Blood 104:1159–1165PubMedCrossRefGoogle Scholar
  108. 108.
    Manier S, Sacco A, Leleu X, Ghobrial IM, Roccaro AM (2012) Bone marrow microenvironment in multiple myeloma progression. J Biomed Biotechnol 2012:157496. doi: 10.1155/2012/157496 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Wang X, Zhang Z, Yao C (2011) Angiogenic activity of mesenchymal stem cells in multiple myeloma. Cancer Investig 29:37–41. doi: 10.3109/07357907.2010.496758 CrossRefGoogle Scholar
  110. 110.
    Terpos E, Anargyrou K, Katodritou E, Kastritis E, Papatheodorou A, Christoulas D, Pouli A, Michalis E, Delimpasi S, Gkotzamanidou M, Nikitas N, Koumoustiotis V, Margaritis D, Tsionos K, Stefanoudaki E, Meletis J, Zervas K, Dimopoulos MA, Greek Myeloma Study Group G (2012) Circulating angiopoietin-1 to angiopoietin-2 ratio is an independent prognostic factor for survival in newly diagnosed patients with multiple myeloma who received therapy with novel antimyeloma agents. Int J Cancer 130:735–742. doi: 10.1002/ijc.26062 PubMedCrossRefGoogle Scholar
  111. 111.
    Joshi S, Khan R, Sharma M, Kumar L, Sharma A (2011) Angiopoietin-2: a potential novel diagnostic marker in multiple myeloma. Clin Biochem 44:590–595. doi: 10.1016/j.clinbiochem.2011.01.010 PubMedCrossRefGoogle Scholar
  112. 112.
    Belloni D, Marcatti M, Ponzoni M, Ciceri F, Veschini L, Corti A, Caligaris Cappio F, Ferrarini M, Ferrero E (2015) Angiopoietin-2 in bone marrow milieu promotes multiple myeloma-associated angiogenesis. Exp Cell Res 330:1–12. doi: 10.1016/j.yexcr.2014.10.017 PubMedCrossRefGoogle Scholar
  113. 113.
    Uneda S, Matsuno F, Sonoki T, Tniguchi I, Kawano F, Hata H (2003) Expression of vascular endothelial growth factor and angiopoietin-2 in myeloma cells. Haematologica 88:113–115PubMedGoogle Scholar
  114. 114.
    Kumar S, Witzig TE, Timm M, Haug J, Wellik L, Kimlinger TK, Greipp PR, Rajkumar SV (2004) Bone marrow angiogenic ability and expression of angiogenic cytokines in myeloma: evidence favoring loss of marrow angiogenesis inhibitory activity with disease progression. Blood 104:1159–1165. doi: 10.1182/blood-2003-11-3811 PubMedCrossRefGoogle Scholar
  115. 115.
    Zhang H, Vakil V, Braunstein M, Smith ELP, Maroney J, Chen L, Dai K, Berenson JR, Hussain MM, Kluepperberg U, Norin AJ, Akman HO, Özçelik T, Oa Batuman (2005) Circulating endothelial progenitor cells in multiple myeloma: implications and significance. Blood 105:3286–3294. doi: 10.1182/blood-200406-2101 PubMedCrossRefGoogle Scholar
  116. 116.
    Bhaskar A, Gupta R, Kumar L, Sharma A, Sharma MC, Kalaivani M, Thakur SC (2012) Circulating endothelial progenitor cells as potential prognostic biomarker in multiple myeloma. Leuk Lymphoma 53:635–640. doi: 10.3109/10428194.2011.628880 PubMedCrossRefGoogle Scholar
  117. 117.
    Moschetta M, Mishima Y, Kawano Y, Manier S, Paiva B, Palomera L, Aljawai Y, Calcinotto A, Unitt C, Sahin I, Sacco A, Glavey S, Shi J, Reagan MR, Prosper F, Bellone M, Chesi M, Bergsagel LP, Vacca A, Roccaro AM, Ghobrial IM (2016) Targeting vasculogenesis to prevent progression in multiple myeloma. Leukemia 30:1103–1115. doi: 10.1038/leu.2016.3 PubMedCrossRefGoogle Scholar
  118. 118.
    Udi J, Wider D, Kleber M, Ihorst G, Muller A, Wasch R, Engelhardt M (2011) Early and mature endothelial progenitors and VEGFR2+ -cells in multiple myeloma: association with disease characteristics and variation in different cell compartments. Leuk Res 35:1265–1268. doi: 10.1016/j.leukres.2011.05.021 PubMedCrossRefGoogle Scholar
  119. 119.
    Wang L, Du F, Zhang HM, Zhang WJ, Wang HX (2015) Changes in circulating endothelial progenitor cells predict responses of multiple myeloma patients to treatment with bortezomib and dexamethasone. Braz J Med Biol Res 48:736–742. doi: 10.1590/1414-431X20154558 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Blix ES, Kildal AB, Bertelsen E, Waage A, Myklebust JH, Kolstad A, Husebekk A (2015) Content of endothelial progenitor cells in autologous stem cell grafts predict survival after transplantation for multiple myeloma. Biol Blood Marrow Transplant 21:840–847. doi: 10.1016/j.bbmt.2014.12.027 PubMedCrossRefGoogle Scholar
  121. 121.
    Kessenbrock K, Wang CY, Werb Z (2015) Matrix metalloproteinases in stem cell regulation and cancer. Matrix Biol 44–46:184–190. doi: 10.1016/j.matbio.2015.01.022 PubMedCrossRefGoogle Scholar
  122. 122.
    Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, MaS Moore, Werb Z, Rafii S (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of Kit-ligand. Cell 109:625–637PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Alexandrakis MG, Sfiridaki A, Miyakis S, Pappa C, Kandidaki E, Alegakis A, Margioris AN (2007) Relationship between serum levels of vascular endothelial growth factor, hepatocyte growth factor and matrix metalloproteinase-9 with biochemical markers of bone disease in multiple myeloma. Clin Chim Acta 379:31–35. doi: 10.1016/j.cca.2006.11.024 PubMedCrossRefGoogle Scholar
  124. 124.
    Van Valckenborgh E, Bakkus M, Munaut C, Noel A, St Pierre Y, Asosingh K, Van Riet I, Van Camp B, Vanderkerken K (2002) Upregulation of matrix metalloproteinase-9 in murine 5T33 multiple myeloma cells by interaction with bone marrow endothelial cells. Int J Cancer 101:512–518. doi: 10.1002/ijc.10642 PubMedCrossRefGoogle Scholar
  125. 125.
    Vande Broek I, Asosingh K, Allegaert V, Leleu X, Facon T, Vanderkerken K, Van Camp B, Van Riet I (2004) Bone marrow endothelial cells increase the invasiveness of human multiple myeloma cells through upregulation of MMP-9: evidence for a role of hepatocyte growth factor. Leukemia 18:976–982. doi: 10.1038/sj.leu.2403331 PubMedCrossRefGoogle Scholar
  126. 126.
    Ribatti D, Basile A, Ruggieri S, Vacca A (2014) Bone marrow vascular niche and the control of angiogenesis in multiple myeloma. Front Biosci 19:304–311. doi: 10.2741/4209 CrossRefGoogle Scholar
  127. 127.
    Barillé S, Akhoundi C, Collette M, Mellerin MP, Rapp MJ, Harousseau JL, Bataille R, Amiot M (1997) Metalloproteinases in multiple myeloma: production of matrix metalloproteinase-9 (MMP-9), activation of proMMP-2, and induction of MMP-1 by myeloma cells. Blood 90:1649–1655PubMedGoogle Scholar
  128. 128.
    Munemasa S, Sakai A, Kuroda Y, Okikawa Y, Katayama Y, Asaoku H, Kubo T, Miyakawa Y, Serikawa M, Sasaki T, Kimura A (2007) Connective tissue growth factor is an indicator of bone involvement in multiple myeloma, but matrix metalloproteinase-9 is not. Br J Haematol 139:41–50. doi: 10.1111/j.1365-2141.2007.06721.x PubMedCrossRefGoogle Scholar
  129. 129.
    Nagasawa T, Kikutani H, Kishimoto T (1994) Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci USA 91:2305–2309PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    de Nigris F, Schiano C, Infante T, Napoli C (2012) CXCR4 inhibitors: tumor vasculature and herapeutic challenges. Recent Pat Anticancer Drug Discov 7:251–264. doi: 10.2174/157489212801820039 PubMedCrossRefGoogle Scholar
  131. 131.
    Yun H-J, Jo D-Y (2003) Production of stromal cell-derived factor-1 (SDF-1) and expression of CXCR4 in human bone marrow endothelial cells. J Korean Med Sci 18:679–685. doi: 10.3346/jkms.2003.18.5.679 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Lapidot T, Kollet O (2002) The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2 m(null) mice. Leukemia 16:1992–2003. doi: 10.1038/sj.leu.2402684 PubMedCrossRefGoogle Scholar
  133. 133.
    Carr AN, Howard BW, Yang HT, Eby-Wilkens E, Loos P, Varbanov A, Qu A, DeMuth JP, Davis MG, Proia A, Terjung RL, Peters KG (2006) Efficacy of systemic administration of SDF-1 in a model of vascular insufficiency: support for an endothelium-dependent mechanism. Cardiovasc Res 69:925–935. doi: 10.1016/j.cardiores.2005.12.005 PubMedCrossRefGoogle Scholar
  134. 134.
    Menu E, Asosingh K, Indraccolo S, De Raeve H, Van Riet I, Van Valckenborgh E, Broek IV, Fujii N, Tamamura H, Van Camp B, Vanderkerken K (2006) The involvement of stromal derived factor 1α in homing and progression of multiple myeloma in the 5TMM model. Haematologica 91:605–612PubMedGoogle Scholar
  135. 135.
    Asri A, Sabour J, Atashi A, Soleimani M (2016) Homing in hematopoietic stem cells: focus on regulatory role of CXCR7 on SDF1A/CXCR4 axis. EXCLI J 2016:134–143. doi: 10.17179/excli2014-585 Google Scholar
  136. 136.
    Lu A, Wang L, Qian L (2015) The role of eNOS in the migration and proliferation of bone-marrow derived endothelial progenitor cells and in vitro angiogenesis. Cell Biol Int 39:484–490. doi: 10.1002/cbin.10405 PubMedCrossRefGoogle Scholar
  137. 137.
    Salcedo R, Wasserman K, Young HA, Grimm MC, Howard OM, Anver MR, Kleinman HK, Murphy WJ, Oppenheim JJ (1999) Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: in vivo neovascularization induced by stromal-derived factor-1alpha. Am J Pathol 154:1125–1135PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Martin SK, Dewar AL, Farrugia AN, Horvath N, Gronthos S, To LB, Zannettino AC (2006) Tumor angiogenesis is associated with plasma levels of stromal-derived factor-1alpha in patients with multiple myeloma. Clin Cancer Res 12:6973–6977. doi: 10.1158/1078-0432.CCR-06-0323 PubMedCrossRefGoogle Scholar
  139. 139.
    Hideshima T, Anderson KC (2002) Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer 2:927–937. doi: 10.1038/nrc952 PubMedCrossRefGoogle Scholar
  140. 140.
    Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248. doi: 10.1038/35025215 PubMedCrossRefGoogle Scholar
  141. 141.
    Podar K, Anderson KC (2008) The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Clin Res 105:1383–1395. doi: 10.1182/blood-200407-2909 Google Scholar
  142. 142.
    Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H, Inai Y, Silver M, Isner JM (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18:3964–3972. doi: 10.1093/emboj/18.14.3964 PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Li B, Sharpe EE, Maupin AB, Teleron AA, Pyle AL, Carmeliet P, Young PP (2006) VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J 20:1495–1497. doi: 10.1096/fj.05-5137fje PubMedCrossRefGoogle Scholar
  144. 144.
    Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Ma Moore, Ka Hajjar, Manova K, Benezra R, Rafii S (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7:1194–1201. doi: 10.1038/nm1101-1194 PubMedCrossRefGoogle Scholar
  145. 145.
    Valkovic T, Babarovic E, Lucin K, Stifter S, Aralica M, Pecanic S, Seili-Bekafigo I, Duletic-Nacinovic A, Nemet D, Jonjic N (2014) Plasma levels of osteopontin and vascular endothelial growth factor in association with clinical features and parameters of tumor burden in patients with multiple myeloma. Biomed Res Int 2014:513170. doi: 10.1155/2014/513170 PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Kumar S, Witzig TE, Timm M, Haug J, Wellik L, Fonseca R, Greipp PR, Rajkumar SV (2003) Expression of VEGF and its receptors by myeloma cells. Leukemia 17:2025–2031. doi: 10.1038/sj.leu.2403084 PubMedCrossRefGoogle Scholar
  147. 147.
    Bhaskar A, Gupta R, Vishnubhatla S, Kumar L, Sharma A, Sharma MC, Das P, Thakur SC (2012) Angiopoietins as biomarker of disease activity and response to therapy in multiple myeloma. Leuk Lymphoma 54:1473–1478. doi: 10.3109/10428194.2012.745523 PubMedCrossRefGoogle Scholar
  148. 148.
    Brito AB, Lourenco GJ, Oliveira GB, De Souza CA, Vassallo J, Lima CS (2014) Associations of VEGF and VEGFR2 polymorphisms with increased risk and aggressiveness of multiple myeloma. Ann Hematol 93:1363–1369. doi: 10.1007/s00277-014-2062-8 PubMedGoogle Scholar
  149. 149.
    Vacca A, Loreto MD, Ribatti D, Di Stefano R, Gadaleta-Caldarola Iodice G, Caloro D, Dammacco F (1995) Bone marrow of patients with active multiple myeloma: angiogenesis and plasma cell adhesion molecules LFA-1, VLA-4, LAM-I, and CD44. Am J Hematol 50:9–14. doi: 10.1002/ajh.2830500103 PubMedCrossRefGoogle Scholar
  150. 150.
    Sanz-Rodriguez F, Hidalgo A, Teixido J (2001) Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin- mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood 97:346–351. doi: 10.1182/blood.V97.2.346 PubMedCrossRefGoogle Scholar
  151. 151.
    Zhang P, Goodrich C, Fu C, Dong C (2014) Melanoma upregulates ICAM-1 expression on endothelial cells through engagement of tumor CD44 with endothelial E-selectin and activation of a PKCα-p38-SP-1 pathway. FASEB J 28:4591–4609. doi: 10.1096/fj.11-202747 PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Wang YD, Hu Y, Sun CY, Wang HF (2008) Role of multiple myeloma cells on normal endothelial cells in co-culture system. Zhonghua Xue Ye Xue Za Zhi 29:658–661PubMedGoogle Scholar
  153. 153.
    Chavakis E, Hain A, Vinci M, Carmona G, Bianchi ME, Vajkoczy P, Zeiher AM, Chavakis T, Dimmeler S (2007) High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells. Circ Res 100:204–212. doi: 10.1161/01.RES.0000257774.55970.f4 PubMedCrossRefGoogle Scholar
  154. 154.
    Hristov M (2003) Endothelial progenitor cells isolation and characterization. Trends Cardiovasc Med 13:201–206. doi: 10.1016/S1050-1738(03)00077-X PubMedCrossRefGoogle Scholar
  155. 155.
    Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123:4195–4200. doi: 10.1242/jcs.023820 PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Wijelath ES, Rahman S, Murray J, Patel Y, Savidge G, Sobel M (2004) Fibronectin promotes VEGF-induced CD34+ cell differentiation into endothelial cells. J Vasc Surg 39:655–660. doi: 10.1016/j.jvs.2003.10.042 PubMedCrossRefGoogle Scholar
  157. 157.
    Gehling UM, Ergün S, Schumacher U, Wagener C, Pantel K, Otte M, Schuch G, Schafhausen P, Mende T, Kilic N, Kluge K, Schäfer B, Hossfeld DK, Fiedler W (2000) In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 95:3106–3112PubMedGoogle Scholar
  158. 158.
    Li B, Bai W, Sun P, Zhou B, Hu B, Ying J (2015) The effect of CXCL12 on endothelial progenitor cells: potential target for angiogenesis in intracerebral hemorrhage. J Interferon Cytokine Res 35:23–31. doi: 10.1089/jir.2014.0004 PubMedCrossRefGoogle Scholar
  159. 159.
    Rössig L, Urbich C, Brühl T, Dernbach E, Heeschen C, Chavakis E, K-i Sasaki, Aicher D, Diehl F, Seeger F, Potente M, Aicher A, Zanetta L, Dejana E, Zeiher AM, Dimmeler S (2005) Histone deacetylase activity is essential for the expression of HoxA9 and for endothelial commitment of progenitor cells. J Exp Med 201:1825–1835. doi: 10.1084/jem.20042097 PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Fredriksson L, Li H, Eriksson U (2004) The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Rev 15:197–204. doi: 10.1016/j.cytogfr.2004.03.007 PubMedCrossRefGoogle Scholar
  161. 161.
    Hamdan R, Zhou Z, Kleinerman ES (2014) Blocking SDF-1α/CXCR4 downregulates PDGF-B and inhibits bone marrow-derived pericyte differentiation and tumor vascular expansion in ewing tumors. Mol Cancer Ther 13:483–491. doi: 10.1158/1535-7163.MCT-13-0447 PubMedCrossRefGoogle Scholar
  162. 162.
    Guo S, Yu L, Cheng Y, Li C, Zhang J, An J, Wang H, Yan B, Zhan T, Cao Y, Zheng H, Li Z (2012) PDGFRβ triggered by bFGF promotes the proliferation and migration of endothelial progenitor cells via p-ERK signalling. Cell Biol Int 36:945–950. doi: 10.1042/CBI20110657 PubMedCrossRefGoogle Scholar
  163. 163.
    Wang H, Huang H, Yin Y, Deng M, Kang H, Huang L (2014) Platelet derived growth factor receptor β over-expression in endothelial progenitor cells promote reendothelialization after vascular injury. Zhonghua Xin Xue Guan Bing Za Zhi 42:214–218PubMedGoogle Scholar
  164. 164.
    Miyata T, Iizasa H, Sai Y, Fujii J, Terasaki T, Nakashima E (2005) Platelet-derived growth factor-BB (PDGF-BB) induces differentiation of bone marrow endothelial progenitor cell-derived cell line TR-BME2 into mural cells, and changes the phenotype. J Cell Physiol 204:948–955. doi: 10.1002/jcp.20362 PubMedCrossRefGoogle Scholar
  165. 165.
    Song S, Ewald AJ, Stallcup W, Werb Z, Bergers G (2005) PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol 7:870–879. doi: 10.1038/ncb1288 PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Sufen G, Xianghong Y, Yongxia C, Qian P (2011) bFGF and PDGF-BB have a synergistic effect on the proliferation, migration and VEGF release of endothelial progenitor cells. Cell Biol Int 35:545–551. doi: 10.1042/CBI20100401 PubMedCrossRefGoogle Scholar
  167. 167.
    Sennino B, Falcon BL, McCauley D, Le T, McCauley T, Kurz JC, Haskell A, Epstein DM, McDonald DM (2007) Sequential loss of tumor vessel pericytes and endothelial cells after inhibition of platelet-derived growth factor B by selective aptamer AX102. Cancer Res 67:7358–7367. doi: 10.1158/0008-5472.CAN-07-0293 PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Coluccia AM, Cirulli T, Neri P, Mangieri D, Colanardi MC, Gnoni A, Di Renzo N, Dammacco F, Tassone P, Ribatti D, Gambacorti-Passerini C, Vacca A (2008) Validation of PDGFRβ and c-Src tyrosine kinases as tumor/vessel targets in patients with multiple myeloma: preclinical efficacy of the novel, orally available inhibitor dasatinib. Blood 112:1346–1356. doi: 10.1182/blood-2007-10-116590 PubMedCrossRefGoogle Scholar
  169. 169.
    Podar K, Richardson PG, Chauhan D, Anderson KC (2007) Targeting the vascular endothelial growth factor pathway in the treatment of multiple myeloma. Expert Rev Anticancer Ther 7:551–566. doi: 10.1586/14737140.7.4.551 PubMedCrossRefGoogle Scholar
  170. 170.
    Torimura T, Iwamoto H, Nakamura T, Abe M, Ikezono Y, Wada F, Sakaue T, Masuda H, Hashimoto O, Koga H, Ueno T, Yano H (2016) Antiangiogenic and antitumor activities of aflibercept, a soluble VEGF receptor-1 and -2, in a mouse model of hepatocellular carcinoma. Neoplasia 18:413–424. doi: 10.1016/j.neo.2016.05.001 PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Y-y Baek, D-k Lee, Kim J, J-h Kim, Park W, Kim T, Han S, Jeoung D, You JC, Lee H, K-s Ha, Y-g Kwon, Y-m Kim (2017) Arg-Leu-Tyr-Glu tetrapeptide inhibits tumor progression by suppressing angiogenesis and vascular permeability via VEGF receptor-2 antagonism. Oncotarget 8:11763–11777. doi: 10.18632/oncotarget.14343 Google Scholar
  172. 172.
    Somlo G, Lashkari A, Bellamy W, Zimmerman TM, Tuscano JM, O’Donnell MR, Mohrbacher AF, Forman SJ, Frankel P, Chen HX, Doroshow JH, Gandara DR (2011) Phase II randomized trial of bevacizumab versus bevacizumab and thalidomide for relapsed/refractory multiple myeloma: a California Cancer Consortium trial. Br J Haematol 154:533–535. doi: 10.1111/j.1365-2141.2011.08623.x PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    White D, Kassim A, Bhaskar B, Yi J, Wamstad K, Paton VE (2012) Results from AMBER, a randomized phase 2 study of bevacizumab and bortezomib versus bortezomib in relapsed or refractory multiple myeloma. Cancer Metastasis Rev 119:339–347. doi: 10.1002/cncr.27745 Google Scholar
  174. 174.
    Podar K, Tonon G, Sattler M, Tai Y-T, Legouill S, Yasui H, Ishitsuka K, Kumar S, Kumar R, Pandite LN, Hideshima T, Chauhan D, Anderson KC (2006) The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proc Natl Acad Sci USA 103:19478–19483. doi: 10.1073/pnas.0609329103 PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Prince HM, Honemann D, Spencer A, Rizzieri DA, Stadtmauer EA, Roberts AW, Bahlis N, Tricot G, Bell B, Demarini DJ, Benjamin Suttle A, Baker KL, Pandite LN (2009) Vascular endothelial growth factor inhibition is not an effective therapeutic strategy for relapsed or refractory multiple myeloma: a phase 2 study of pazopanib (GW786034). Blood 113:4819–4820. doi: 10.1182/blood-2009-02-207209 PubMedCrossRefGoogle Scholar
  176. 176.
    Zangari M, Anaissie E, Stopeck A, Morimoto A, Tan N, Lancet J, Cooper M, Hannah A, Garcia-Manero G, Faderl S, Kantarjian H, Cherrington J, Albitar M, Giles FJ (2004) Phase II study of SU5416, a small molecule vascular endothelial growth factor tyrosine kinase receptor inhibitor, in patients with refractory multiple myeloma. Clin Cancer Res 10:88–95. doi: 10.1158/1078-0432.CCR-0221-3 PubMedCrossRefGoogle Scholar
  177. 177.
    Kovacs MJ, Reece DE, Marcellus D, Meyer RM, Mathews S, Dong RP, Eisenhauer E (2006) A phase II study of ZD6474 (ZactimaTM), a selective inhibitor of VEGFR and EGFR tyrosine kinase in patients with relapsed multiple myeloma—NCIC CTG IND.145. Invest New Drugs 24:529–535. doi: 10.1007/s10637-006-9022-7 PubMedGoogle Scholar
  178. 178.
    Azab AK, Runnels JM, Pitsillides C, A-s Moreau, Azab F, Leuleu X, Jia X, Wright R, Ospina B, Carlson AL, Alt C, Burwick N, Roccaro AM, Ngo HT, Farag M, Melhem MR, Sacco A, Munshi NC, Hideshima T, Rollins BJ, Anderson KC, Kung AL, Lin CP, Ghobrial IM (2009) CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 113:4341–4351. doi: 10.1182/blood-2008-10-186668 PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Yin Y, Huang L, Zhao X, Fang Y, Yu S, Zhao J, Cui B (2007) AMD3100 mobilizes endothelial progenitor cells in mice, but inhibits its biological functions by blocking an autocrine/paracrine regulatory loop of stromal cell derived factor-1 in vitro. Cardiovasc Pharmacol 50:61–67. doi: 10.1097/FJC.0b013e3180587e4d CrossRefGoogle Scholar
  180. 180.
    Wichert S, Juliusson G, Johansson Å, Sonesson E, Teige I, Wickenberg AT, Frendeus B, Korsgren M, Hansson M (2017) A single-arm, open-label, phase 2 clinical trial evaluating disease response following treatment with BI-505, a human anti-intercellular adhesion molecule-1 monoclonal antibody, in patients with smoldering multiple myeloma. PLoS ONE 12:e0171205. doi: 10.1371/journal.pone.0171205 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Maria Margarida Tenreiro
    • 1
  • Maria Leonor Correia
    • 2
  • Maria Alexandra Brito
    • 1
    • 2
  1. 1.Research Institute for Medicines (iMed.ULisboa), Faculty of PharmacyUniversidade de LisboaLisbonPortugal
  2. 2.Department of Biochemistry and Human Biology, Faculty of PharmacyUniversidade de LisboaLisbonPortugal

Personalised recommendations