, Volume 20, Issue 4, pp 655–662 | Cite as

PDGFRβ-P2A-CreERT2 mice: a genetic tool to target pericytes in angiogenesis

  • Henar CuervoEmail author
  • Brianna Pereira
  • Taliha Nadeem
  • Mika Lin
  • Frances Lee
  • Jan Kitajewski
  • Chyuan-Sheng LinEmail author
Brief Communication


Pericytes are essential mural cells distinguished by their association with small caliber blood vessels and the presence of a basement membrane shared with endothelial cells. Pericyte interaction with the endothelium plays an important role in angiogenesis; however, very few tools are currently available that allow for the targeting of pericytes in mouse models, limiting our ability to understand their biology. We have generated a novel mouse line expressing tamoxifen-inducible Cre-recombinase under the control of the platelet-derived growth factor receptor β promoter: PDGFRβ-P2A-CreER T2 . We evaluated the expression of the PDGFRβ-P2A-CreER T2 line by crossing it with fluorescent reporter lines and analyzed reporter signal in the angiogenic retina and brain at different time points after tamoxifen administration. Reporter lines showed labeling of NG2+, desmin+, PDGFRβ+ perivascular cells in the retina and the brain, indicating successful targeting of pericytes; however, signal from reporter lines was also observed in a small subset of glial cells both in the retina and the brain. We also evaluated recombination in tumors and found efficient recombination in perivascular cells associated with tumor vasculature. As a proof of principle, we used our newly generated driver to delete Notch signaling in perivascular cells and observed a loss of smooth muscle cells in retinal arteries, consistent with previously published studies evaluating Notch3 null mice. We conclude that the PDGFRβ-P2A-CreER T2 line is a powerful new tool to target pericytes and will aid the field in gaining a deeper understanding of the role of these cells in physiological and pathological settings.


Mural cells Pericytes Mouse models Platelet-derived growth factor β 



We would like to thank Valeriya Borisenko for her assistance in mouse husbandry, and Hui-Chuan Hung for her assistance in the microinjection to generate the germline chimera and mouse breeding. This work was funded by NIH Grant R01HL112626 (J.K.), and NCI P30CA013696-40 (C.S.L).

Author contributions’

C-SL, ML, and JK conceptualized and designed the PDGFRβ-P2A-CreER T2 mice. ML generated the PDGFRβ-P2A-CreERT2 targeting vector. FL performed the gene targeting and identified the targeted ES cells for the generation of the PDGFRβ-P2A-CreER T2 mice. HC, BP, and TN collected and interpreted the data on the characterization of the PDGFRβ-P2A-CreER T2 with the two reporter mouse lines. HC drafted the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted as described above.

Supplementary material

10456_2017_9570_MOESM1_ESM.pdf (9.6 mb)
Supplementary material 1 (PDF 9866 kb)


  1. 1.
    Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21(2):193–215. doi: 10.1016/j.devcel.2011.07.001 CrossRefPubMedGoogle Scholar
  2. 2.
    Winkler EA, Bell RD, Zlokovic BV (2011) Central nervous system pericytes in health and disease. Nat Neurosci 14(11):1398–1405. doi: 10.1038/nn.2946 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hammes HP, Lin J, Renner O, Shani M, Lundqvist A, Betsholtz C, Brownlee M, Deutsch U (2002) Pericytes and the pathogenesis of diabetic retinopathy. Diabetes 51(10):3107–3112CrossRefPubMedGoogle Scholar
  4. 4.
    Lin SL, Kisseleva T, Brenner DA, Duffield JS (2008) Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol 173(6):1617–1627. doi: 10.2353/ajpath.2008.080433 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sagare AP, Bell RD, Zhao Z, Ma Q, Winkler EA, Ramanathan A, Zlokovic BV (2013) Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat Commun 4:2932. doi: 10.1038/ncomms3932 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Liu S, Agalliu D, Yu C, Fisher M (2012) The role of pericytes in blood-brain barrier function and stroke. Curr Pharm Des 18(25):3653–3662CrossRefPubMedGoogle Scholar
  7. 7.
    Erber R, Thurnher A, Katsen AD, Groth G, Kerger H, Hammes HP, Menger MD, Ullrich A, Vajkoczy P (2004) Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J 18(2):338–340. doi: 10.1096/fj.03-0271fje PubMedGoogle Scholar
  8. 8.
    Keskin D, Kim J, Cooke VG, Wu CC, Sugimoto H, Gu C, De Palma M, Kalluri R, LeBleu VS (2015) Targeting vascular pericytes in hypoxic tumors increases lung metastasis via angiopoietin-2. Cell Rep 10(7):1066–1081. doi: 10.1016/j.celrep.2015.01.035 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Xian X, Hakansson J, Stahlberg A, Lindblom P, Betsholtz C, Gerhardt H, Semb H (2006) Pericytes limit tumor cell metastasis. J Clin Invest 116(3):642–651. doi: 10.1172/JCI25705 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhu X, Hill RA, Dietrich D, Komitova M, Suzuki R, Nishiyama A (2011) Age-dependent fate and lineage restriction of single NG2 cells. Development 138(4):745–753. doi: 10.1242/dev.047951 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Volz KS, Jacobs AH, Chen HI, Poduri A, McKay AS, Riordan DP, Kofler N, Kitajewski J, Weissman I, Red-Horse K (2015) Pericytes are progenitors for coronary artery smooth muscle. Elife. doi: 10.7554/eLife.10036 PubMedPubMedCentralGoogle Scholar
  12. 12.
    Cuttler AS, LeClair RJ, Stohn JP, Wang Q, Sorenson CM, Liaw L, Lindner V (2011) Characterization of Pdgfrb-Cre transgenic mice reveals reduction of ROSA26 reporter activity in remodeling arteries. Genesis 49(8):673–680. doi: 10.1002/dvg.20769 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Foo SS, Turner CJ, Adams S, Compagni A, Aubyn D, Kogata N, Lindblom P, Shani M, Zicha D, Adams RH (2006) Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly. Cell 124(1):161–173. doi: 10.1016/j.cell.2005.10.034 CrossRefPubMedGoogle Scholar
  14. 14.
    Ulvmar MH, Martinez-Corral I, Stanczuk L, Makinen T (2016) Pdgfrb-Cre targets lymphatic endothelial cells of both venous and non-venous origins. Genesis 54(6):350–358. doi: 10.1002/dvg.22939 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45(9):593–605. doi: 10.1002/dvg.20335 CrossRefPubMedGoogle Scholar
  16. 16.
    Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AR, Lein ES, Zeng H (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13(1):133–140. doi: 10.1038/nn.2467 CrossRefPubMedGoogle Scholar
  17. 17.
    Kim JH, Lee SR, Li LH, Park HJ, Park JH, Lee KY, Kim MK, Shin BA, Choi SY (2011) High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS ONE 6(4):e18556. doi: 10.1371/journal.pone.0018556 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Powner MB, Vevis K, McKenzie JA, Gandhi P, Jadeja S, Fruttiger M (2012) Visualization of gene expression in whole mouse retina by in situ hybridization. Nat Protoc 7(6):1086–1096. doi: 10.1038/nprot.2012.050 CrossRefPubMedGoogle Scholar
  19. 19.
    Liu J, Willet SG, Bankaitis ED, Xu Y, Wright CV, Gu G (2013) Non-parallel recombination limits Cre-LoxP-based reporters as precise indicators of conditional genetic manipulation. Genesis 51(6):436–442. doi: 10.1002/dvg.22384 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Coppoolse ER, de Vroomen MJ, van Gennip F, Hersmus BJ, van Haaren MJ (2005) Size does matter: cre-mediated somatic deletion efficiency depends on the distance between the target lox-sites. Plant Mol Biol 58(5):687–698. doi: 10.1007/s11103-005-7705-7 CrossRefPubMedGoogle Scholar
  21. 21.
    Fruttiger M (2007) Development of the retinal vasculature. Angiogenesis 10(2):77–88. doi: 10.1007/s10456-007-9065-1 CrossRefPubMedGoogle Scholar
  22. 22.
    Abramsson A, Berlin O, Papayan H, Paulin D, Shani M, Betsholtz C (2002) Analysis of mural cell recruitment to tumor vessels. Circulation 105(1):112–117CrossRefPubMedGoogle Scholar
  23. 23.
    Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG (2000) Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60(5):1388–1393PubMedGoogle Scholar
  24. 24.
    Domenga V, Fardoux P, Lacombe P, Monet M, Maciazek J, Krebs LT, Klonjkowski B, Berrou E, Mericskay M, Li Z, Tournier-Lasserve E, Gridley T, Joutel A (2004) Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 18(22):2730–2735. doi: 10.1101/gad.308904 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Liu H, Zhang W, Kennard S, Caldwell RB, Lilly B (2010) Notch3 is critical for proper angiogenesis and mural cell investment. Circ Res 107(7):860–870. doi: 10.1161/CIRCRESAHA.110.218271 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Guruharsha KG, Kankel MW, Artavanis-Tsakonas S (2012) The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet 13(9):654–666. doi: 10.1038/nrg3272 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Physiology and Biophysics, College of MedicineUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of Pathology and Cell BiologyColumbia University Medical CenterNew YorkUSA
  3. 3.Department of Obstetrics/GynecologyColumbia University Medical CenterNew YorkUSA
  4. 4.Transgenic Mouse Shared Resource, Herbert Irving Comprehensive Cancer CenterColumbia University Medical CenterNew YorkUSA
  5. 5.Northwell Health-Lenox Health Greenwich VillageNew YorkUSA
  6. 6.Department of BiologyWellesley CollegeWellesleyUSA

Personalised recommendations