, Volume 20, Issue 4, pp 409–426 | Cite as

Tumor angiogenesis and vascular normalization: alternative therapeutic targets

Review Paper


Tumor blood vessels are a key target for cancer therapeutic management. Tumor cells secrete high levels of pro-angiogenic factors which contribute to the creation of an abnormal vascular network characterized by disorganized, immature and permeable blood vessels, resulting in poorly perfused tumors. The hypoxic microenvironment created by impaired tumor perfusion can promote the selection of more invasive and aggressive tumor cells and can also impede the tumor-killing action of immune cells. Furthermore, abnormal tumor perfusion also reduces the diffusion of chemotherapeutic drugs and radiotherapy efficiency. To fight against this defective phenotype, the normalization of the tumor vasculature has emerged as a new therapeutic strategy. Vascular normalization, by restoring proper tumor perfusion and oxygenation, could limit tumor cell invasiveness and improve the effectiveness of anticancer treatments. In this review, we investigate the mechanisms involved in tumor angiogenesis and describe strategies used to achieve vascular normalization.


Tumor vasculature Normalization Angiogenesis Maturation of blood vessels Improvement of cancer therapy 



This work was supported from an operating grant of the Cancer Research Society of Canada and a New Investigator Award from the Heart and Stroke Foundation of Canada (B.L.).


  1. 1.
    Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10:417–427. doi: 10.1038/nrd3455 PubMedCrossRefGoogle Scholar
  2. 2.
    Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307. doi: 10.1038/nature10144 PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7:987–989. doi: 10.1038/nm0901-987 PubMedCrossRefGoogle Scholar
  4. 4.
    Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62. doi: 10.1126/science.1104819 PubMedCrossRefGoogle Scholar
  5. 5.
    Jain RK (2014) Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26:605–622. doi: 10.1016/j.ccell.2014.10.006 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Goel S, Duda DG, Xu L et al (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91:1071–1121. doi: 10.1152/physrev.00038.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Gerhardt H, Golding M, Fruttiger M et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177. doi: 10.1083/jcb.200302047 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Phng L-K, Gerhardt H (2009) Angiogenesis: a team effort coordinated by notch. Dev Cell 16:196–208. doi: 10.1016/j.devcel.2009.01.015 PubMedCrossRefGoogle Scholar
  9. 9.
    Bray SJ (2016) Notch signalling in context. Nat Rev Mol Cell Biol. doi: 10.1038/nrm.2016.94 PubMedGoogle Scholar
  10. 10.
    Blanco R, Gerhardt H (2013) VEGF and Notch in Tip and Stalk Cell Selection. Cold Spring Harb Perspect Med. doi: 10.1101/cshperspect.a006569 PubMedPubMedCentralGoogle Scholar
  11. 11.
    Jakobsson L, Franco CA, Bentley K et al (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12:943–953. doi: 10.1038/ncb2103 PubMedCrossRefGoogle Scholar
  12. 12.
    Ferrara N, Gerber H-P, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676. doi: 10.1038/nm0603-669 PubMedCrossRefGoogle Scholar
  13. 13.
    Benedito R, Roca C, Sörensen I et al (2009) The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137:1124–1135. doi: 10.1016/j.cell.2009.03.025 PubMedCrossRefGoogle Scholar
  14. 14.
    Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9:446–454. doi: 10.1038/nrm2406 PubMedCrossRefGoogle Scholar
  15. 15.
    De Smet F, Segura I, De Bock K et al (2009) Mechanisms of vessel branching: filopodia on endothelial tip cells lead the way. Arterioscler Thromb Vasc Biol 29:639–649. doi: 10.1161/ATVBAHA.109.185165 PubMedCrossRefGoogle Scholar
  16. 16.
    Lamalice L, Boeuf FL, Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100:782–794. doi: 10.1161/01.RES.0000259593.07661.1e PubMedCrossRefGoogle Scholar
  17. 17.
    Ridley AJ (2015) Rho GTPase signalling in cell migration. Curr Opin Cell Biol 36:103–112. doi: 10.1016/ PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Phng L-K, Stanchi F, Gerhardt H (2013) Filopodia are dispensable for endothelial tip cell guidance. Development 140:4031–4040. doi: 10.1242/dev.097352 PubMedCrossRefGoogle Scholar
  19. 19.
    Larrivée B, Freitas C, Suchting S et al (2009) Guidance of vascular development: lessons from the nervous system. Circ Res 104:428–441. doi: 10.1161/CIRCRESAHA.108.188144 PubMedCrossRefGoogle Scholar
  20. 20.
    Larrivée B, Freitas C, Trombe M et al (2007) Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis. Genes Dev 21:2433–2447. doi: 10.1101/gad.437807 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    London NR, Smith MCP, Li DY (2009) Emerging mechanisms of vascular stabilization. J Thromb Haemost JTH 7(Suppl 1):57–60. doi: 10.1111/j.1538-7836.2009.03421.x PubMedCrossRefGoogle Scholar
  22. 22.
    Koch AW, Mathivet T, Larrivée B et al (2011) Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B. Dev Cell 20:33–46. doi: 10.1016/j.devcel.2010.12.001 PubMedCrossRefGoogle Scholar
  23. 23.
    Davis GE, Bayless KJ (2003) An integrin and Rho GTPase-dependent pinocytic vacuole mechanism controls capillary lumen formation in collagen and fibrin matrices. Microcirc NY N 10:27–44. doi: 10.1038/ CrossRefGoogle Scholar
  24. 24.
    Davis GE, Koh W, Stratman AN (2007) Mechanisms controlling human endothelial lumen formation and tube assembly in three-dimensional extracellular matrices. Birth Defects Res Part C Embryo Today Rev 81:270–285. doi: 10.1002/bdrc.20107 CrossRefGoogle Scholar
  25. 25.
    Sacharidou A, Stratman AN, Davis GE (2012) Molecular mechanisms controlling vascular lumen formation in three-dimensional extracellular matrices. Cells Tissues Organs 195:122–143. doi: 10.1159/000331410 PubMedCrossRefGoogle Scholar
  26. 26.
    Strilić B, Kucera T, Eglinger J et al (2009) The molecular basis of vascular lumen formation in the developing mouse aorta. Dev Cell 17:505–515. doi: 10.1016/j.devcel.2009.08.011 PubMedCrossRefGoogle Scholar
  27. 27.
    Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22:1276–1312. doi: 10.1101/gad.1653708 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Augustin HG, Koh GY, Thurston G, Alitalo K (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10:165–177. doi: 10.1038/nrm2639 PubMedCrossRefGoogle Scholar
  29. 29.
    Huang H, Bhat A, Woodnutt G, Lappe R (2010) Targeting the ANGPT-TIE2 pathway in malignancy. Nat Rev Cancer 10:575–585. doi: 10.1038/nrc2894 PubMedCrossRefGoogle Scholar
  30. 30.
    Lucke S, Levkau B (2010) Endothelial functions of sphingosine-1-phosphate. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 26:87–96. doi: 10.1159/000315109 CrossRefGoogle Scholar
  31. 31.
    Dejana E, Tournier-Lasserve E, Weinstein BM (2009) The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 16:209–221. doi: 10.1016/j.devcel.2009.01.004 PubMedCrossRefGoogle Scholar
  32. 32.
    Privratsky JR, Newman PJ (2014) PECAM-1: regulator of endothelial junctional integrity. Cell Tissue Res 355:607–619. doi: 10.1007/s00441-013-1779-3 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Wallez Y, Huber P (2008) Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. Biochim Biophys Acta BBA: Biomembr 1778:794–809. doi: 10.1016/j.bbamem.2007.09.003 CrossRefGoogle Scholar
  34. 34.
    Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncol 7:452–464. doi: 10.1215/S1152851705000232 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Morikawa S, Baluk P, Kaidoh T et al (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160:985–1000. doi: 10.1016/S0002-9440(10)64920-6 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Abramsson A, Lindblom P, Betsholtz C (2003) Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 112:1142–1151. doi: 10.1172/JCI200318549 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Greenberg JI, Shields DJ, Barillas SG et al (2008) A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature 456:809–813. doi: 10.1038/nature07424 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ribatti D, Crivellato E (2012) Mast cells, angiogenesis, and tumour growth. Biochim Biophys Acta 1822:2–8. doi: 10.1016/j.bbadis.2010.11.010 PubMedCrossRefGoogle Scholar
  39. 39.
    Guo M, Breslin JW, Wu MH et al (2008) VE-cadherin and beta-catenin binding dynamics during histamine-induced endothelial hyperpermeability. Am J Physiol Cell Physiol 294:C977–C984. doi: 10.1152/ajpcell.90607.2007 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Beckers CML, van Hinsbergh VWM, van Nieuw Amerongen GP (2010) Driving Rho GTPase activity in endothelial cells regulates barrier integrity. Thromb Haemost 103:40–55. doi: 10.1160/TH09-06-0403 PubMedCrossRefGoogle Scholar
  41. 41.
    Baluk P, Morikawa S, Haskell A et al (2003) Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol 163:1801–1815. doi: 10.1016/S0002-9440(10)63540-7 PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Inai T, Mancuso M, Hashizume H et al (2004) Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 165:35–52. doi: 10.1016/S0002-9440(10)63273-7 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Jain RK, Martin JD, Stylianopoulos T (2014) The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng 16:321–346. doi: 10.1146/annurev-bioeng-071813-105259 PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Reymond N, d’Água BB, Ridley AJ (2013) Crossing the endothelial barrier during metastasis. Nat Rev Cancer 13:858–870. doi: 10.1038/nrc3628 PubMedCrossRefGoogle Scholar
  45. 45.
    Kim BG, Gao M-Q, Kang S et al (2017) Mechanical compression induces VEGFA overexpression in breast cancer via DNMT3A-dependent miR-9 downregulation. Cell Death Dis 8:e2646. doi: 10.1038/cddis.2017.73 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Heldin C-H, Rubin K, Pietras K, Östman A (2004) High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer 4:806–813. doi: 10.1038/nrc1456 PubMedCrossRefGoogle Scholar
  47. 47.
    Giaccia AJ, Simon MC, Johnson R (2004) The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease. Genes Dev 18:2183–2194. doi: 10.1101/gad.1243304 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Mazzone M, Dettori D, Leite de Oliveira R et al (2009) Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136:839–851. doi: 10.1016/j.cell.2009.01.020 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Marín-Hernández A, Gallardo-Pérez JC, Ralph SJ et al (2009) HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem 9:1084–1101PubMedCrossRefGoogle Scholar
  50. 50.
    Darby IA, Hewitson TD (2016) Hypoxia in tissue repair and fibrosis. Cell Tissue Res 365:553–562. doi: 10.1007/s00441-016-2461-3 PubMedCrossRefGoogle Scholar
  51. 51.
    Masoud GN, Li W (2015) HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5:378–389. doi: 10.1016/j.apsb.2015.05.007 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Bullen JW, Tchernyshyov I, Holewinski RJ et al (2016) Protein kinase A-dependent phosphorylation stimulates the transcriptional activity of hypoxia-inducible factor 1. Sci Signal 9:ra56. doi: 10.1126/scisignal.aaf0583 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Larcher F, Franco M, Bolontrade M et al (2003) Modulation of the angiogenesis response through Ha-ras control, placenta growth factor, and angiopoietin expression in mouse skin carcinogenesis. Mol Carcinog 37:83–90. doi: 10.1002/mc.10126 PubMedCrossRefGoogle Scholar
  54. 54.
    Rak J, Yu JL (2004) Oncogenes and tumor angiogenesis: the question of vascular “supply” and vascular “demand”. Semin Cancer Biol 14:93–104. doi: 10.1016/j.semcancer.2003.09.014 PubMedCrossRefGoogle Scholar
  55. 55.
    Arbiser JL, Moses MA, Fernandez CA et al (1997) Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc Natl Acad Sci USA 94:861–866PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Govindarajan B, Bai X, Cohen C et al (2003) Malignant transformation of melanocytes to melanoma by constitutive activation of mitogen-activated protein kinase kinase (MAPKK) signaling. J Biol Chem 278:9790–9795. doi: 10.1074/jbc.M212929200 PubMedCrossRefGoogle Scholar
  57. 57.
    Sofia Vala I, Martins LR, Imaizumi N et al (2010) Low doses of ionizing radiation promote tumor growth and metastasis by enhancing angiogenesis. PLoS ONE 5:e11222. doi: 10.1371/journal.pone.0011222 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hillen F, Griffioen AW (2007) Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 26:489–502. doi: 10.1007/s10555-007-9094-7 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ribatti D, Djonov V (2012) Intussusceptive microvascular growth in tumors. Cancer Lett 316:126–131. doi: 10.1016/j.canlet.2011.10.040 PubMedCrossRefGoogle Scholar
  60. 60.
    Paku S, Dezso K, Bugyik E et al (2011) A new mechanism for pillar formation during tumor-induced intussusceptive angiogenesis: inverse sprouting. Am J Pathol 179:1573–1585. doi: 10.1016/j.ajpath.2011.05.033 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Ribatti D, Nico B, Floris C et al (2005) Microvascular density, vascular endothelial growth factor immunoreactivity in tumor cells, vessel diameter and intussusceptive microvascular growth in primary melanoma. Oncol Rep 14:81–84PubMedGoogle Scholar
  62. 62.
    Maniotis AJ, Folberg R, Hess A et al (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155:739–752. doi: 10.1016/S0002-9440(10)65173-5 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Paulis YWJ, Soetekouw PMMB, Verheul HMW et al (2010) Signalling pathways in vasculogenic mimicry. Biochim Biophys Acta 1806:18–28. doi: 10.1016/j.bbcan.2010.01.001 PubMedGoogle Scholar
  64. 64.
    Chang YS, di Tomaso E, McDonald DM et al (2000) Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci USA 97:14608–14613. doi: 10.1073/pnas.97.26.14608 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ruf W, Seftor EA, Petrovan RJ et al (2003) Differential role of tissue factor pathway inhibitors 1 and 2 in melanoma vasculogenic mimicry. Cancer Res 63:5381–5389PubMedGoogle Scholar
  66. 66.
    Yang JP, Liao YD, Mai DM et al (2016) Tumor vasculogenic mimicry predicts poor prognosis in cancer patients: a meta-analysis. Angiogenesis 19:191–200. doi: 10.1007/s10456-016-9500-2 PubMedCrossRefGoogle Scholar
  67. 67.
    Qian C-N (2013) Hijacking the vasculature in ccRCC–co-option, remodelling and angiogenesis. Nat Rev Urol 10:300–304. doi: 10.1038/nrurol.2013.26 PubMedCrossRefGoogle Scholar
  68. 68.
    Lyden D, Hattori K, Dias S et al (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7:1194–1201. doi: 10.1038/nm1101-1194 PubMedCrossRefGoogle Scholar
  69. 69.
    Rafii S, Meeus S, Dias S et al (2002) Contribution of marrow-derived progenitors to vascular and cardiac regeneration. Semin Cell Dev Biol 13:61–67. doi: 10.1006/scdb.2001.0285 PubMedCrossRefGoogle Scholar
  70. 70.
    Patenaude A, Parker J, Karsan A (2010) Involvement of endothelial progenitor cells in tumor vascularization. Microvasc Res 79:217–223. doi: 10.1016/j.mvr.2010.01.007 PubMedCrossRefGoogle Scholar
  71. 71.
    Gao D, Nolan DJ, Mellick AS et al (2008) Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319:195–198. doi: 10.1126/science.1150224 PubMedCrossRefGoogle Scholar
  72. 72.
    Peters BA, Diaz LA, Polyak K et al (2005) Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat Med 11:261–262. doi: 10.1038/nm1200 PubMedCrossRefGoogle Scholar
  73. 73.
    Larrivée B, Karsan A (2007) Involvement of marrow-derived endothelial cells in vascularization. Handb Exp Pharmacol. doi: 10.1007/978-3-540-68976-8_5 PubMedGoogle Scholar
  74. 74.
    Wickersheim A, Kerber M, de Miguel LS et al (2009) Endothelial progenitor cells do not contribute to tumor endothelium in primary and metastatic tumors. Int J Cancer 125:1771–1777. doi: 10.1002/ijc.24605 PubMedCrossRefGoogle Scholar
  75. 75.
    Purhonen S, Palm J, Rossi D et al (2008) Bone marrow-derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc Natl Acad Sci USA 105:6620–6625. doi: 10.1073/pnas.0710516105 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Larrivée B, Niessen K, Pollet I et al (2005) Minimal contribution of marrow-derived endothelial precursors to tumor vasculature. J Immunol Baltim Md 175:2890–2899Google Scholar
  77. 77.
    Machein MR, Renninger S, de Lima-Hahn E, Plate KH (2003) Minor contribution of bone marrow-derived endothelial progenitors to the vascularization of murine gliomas. Brain Pathol Zur Switz 13:582–597CrossRefGoogle Scholar
  78. 78.
    Zentilin L, Tafuro S, Zacchigna S et al (2006) Bone marrow mononuclear cells are recruited to the sites of VEGF-induced neovascularization but are not incorporated into the newly formed vessels. Blood 107:3546–3554. doi: 10.1182/blood-2005-08-3215 PubMedCrossRefGoogle Scholar
  79. 79.
    Ricci-Vitiani L, Pallini R, Biffoni M et al (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–828. doi: 10.1038/nature09557 PubMedCrossRefGoogle Scholar
  80. 80.
    Kaur S, Bajwa P (2014) A “tête-à tête” between cancer stem cells and endothelial progenitor cells in tumor angiogenesis. Clin Trans Oncol 16:115–121. doi: 10.1007/s12094-013-1103-4 CrossRefGoogle Scholar
  81. 81.
    Orth M, Lauber K, Niyazi M et al (2014) Current concepts in clinical radiation oncology. Radiat Environ Biophys 53:1–29. doi: 10.1007/s00411-013-0497-2 PubMedCrossRefGoogle Scholar
  82. 82.
    Busk M, Horsman MR (2013) Relevance of hypoxia in radiation oncology: pathophysiology, tumor biology and implications for treatment. Q J Nucl Med Mol Imag 57:219–234Google Scholar
  83. 83.
    Cosse J-P, Michiels C (2008) Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression. Anticancer Agents Med Chem 8:790–797PubMedCrossRefGoogle Scholar
  84. 84.
    Luk CK, Veinot-Drebot L, Tjan E, Tannock IF (1990) Effect of transient hypoxia on sensitivity to doxorubicin in human and murine cell lines. J Natl Cancer Inst 82:684–692PubMedCrossRefGoogle Scholar
  85. 85.
    Young SD, Hill RP (1990) Effects of reoxygenation on cells from hypoxic regions of solid tumors: anticancer drug sensitivity and metastatic potential. J Natl Cancer Inst 82:371–380PubMedCrossRefGoogle Scholar
  86. 86.
    Sanna K, Rofstad EK (1994) Hypoxia-induced resistance to doxorubicin and methotrexate in human melanoma cell lines in vitro. Int J Cancer 58:258–262PubMedCrossRefGoogle Scholar
  87. 87.
    Viallard C, Chezal J-M, Mishellany F et al (2016) Targeting DNA repair by coDbait enhances melanoma targeted radionuclide therapy. Oncotarget 7:12927–12936. doi: 10.18632/oncotarget.7340 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Klein M, Lotem M, Peretz T et al (2013) Safety and efficacy of 188-rhenium-labeled antibody to melanin in patients with metastatic melanoma. J Skin Cancer 2013:828329. doi: 10.1155/2013/828329 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Huang Y, Goel S, Duda DG et al (2013) Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res 73:2943–2948. doi: 10.1158/0008-5472.CAN-12-4354 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Curiel TJ, Coukos G, Zou L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949. doi: 10.1038/nm1093 PubMedCrossRefGoogle Scholar
  91. 91.
    Movahedi K, Laoui D, Gysemans C et al (2010) Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res 70:5728–5739. doi: 10.1158/0008-5472.CAN-09-4672 PubMedCrossRefGoogle Scholar
  92. 92.
    Corzo CA, Condamine T, Lu L et al (2010) HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207:2439–2453. doi: 10.1084/jem.20100587 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Leung DW, Cachianes G, Kuang WJ et al (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309PubMedCrossRefGoogle Scholar
  94. 94.
    Senger DR, Galli SJ, Dvorak AM et al (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985PubMedCrossRefGoogle Scholar
  95. 95.
    Crawford Y, Ferrara N (2009) VEGF inhibition: insights from preclinical and clinical studies. Cell Tissue Res 335:261–269. doi: 10.1007/s00441-008-0675-8 PubMedCrossRefGoogle Scholar
  96. 96.
    Ohtsu A, Shah MA, Van Cutsem E et al (2011) Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a randomized, double-blind, placebo-controlled phase III study. J Clin Oncol 29:3968–3976. doi: 10.1200/JCO.2011.36.2236 PubMedCrossRefGoogle Scholar
  97. 97.
    Reck M, von Pawel J, Zatloukal P et al (2009) Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol 27:1227–1234. doi: 10.1200/JCO.2007.14.5466 PubMedCrossRefGoogle Scholar
  98. 98.
    Miller K, Wang M, Gralow J et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357:2666–2676. doi: 10.1056/NEJMoa072113 PubMedCrossRefGoogle Scholar
  99. 99.
    Escudier B, Eisen T, Stadler WM et al (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125–134. doi: 10.1056/NEJMoa060655 PubMedCrossRefGoogle Scholar
  100. 100.
    Jayson GC, Kerbel R, Ellis LM, Harris AL (2016) Antiangiogenic therapy in oncology: current status and future directions. Lancet Lond Engl 388:518–529. doi: 10.1016/S0140-6736(15)01088-0 CrossRefGoogle Scholar
  101. 101.
    Fan F, Samuel S, Gaur P et al (2011) Chronic exposure of colorectal cancer cells to bevacizumab promotes compensatory pathways that mediate tumour cell migration. Br J Cancer 104:1270–1277. doi: 10.1038/bjc.2011.81 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Widakowich C, de Castro G, de Azambuja E et al (2007) Review: side effects of approved molecular targeted therapies in solid cancers. Oncologist 12:1443–1455. doi: 10.1634/theoncologist.12-12-1443 PubMedCrossRefGoogle Scholar
  103. 103.
    Tolaney SM, Boucher Y, Duda DG et al (2015) Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. Proc Natl Acad Sci USA 112:14325–14330. doi: 10.1073/pnas.1518808112 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Winkler F, Kozin SV, Tong RT et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563. doi: 10.1016/j.ccr.2004.10.011 PubMedGoogle Scholar
  105. 105.
    Batchelor TT, Sorensen AG, di Tomaso E et al (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95. doi: 10.1016/j.ccr.2006.11.021 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Graeber TG, Osmanian C, Jacks T et al (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91. doi: 10.1038/379088a0 PubMedCrossRefGoogle Scholar
  107. 107.
    Ebos JML, Kerbel RS (2011) Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol 8:210–221. doi: 10.1038/nrclinonc.2011.21 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Huang Y, Yuan J, Righi E et al (2012) Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci USA 109:17561–17566. doi: 10.1073/pnas.1215397109 PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Martin JD, Fukumura D, Duda DG et al (2016) Reengineering the tumor microenvironment to alleviate hypoxia and overcome cancer heterogeneity. Cold Spring Harb Perspect Med. doi: 10.1101/cshperspect.a027094 Google Scholar
  110. 110.
    Chen B-B, Lu Y-S, Lin C-H et al (2016) A pilot study to determine the timing and effect of bevacizumab on vascular normalization of metastatic brain tumors in breast cancer. BMC Cancer 16:466. doi: 10.1186/s12885-016-2494-8 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Lin A, Hahn SM (2012) Hypoxia imaging markers and applications for radiation treatment planning. Semin Nucl Med 42:343–352. doi: 10.1053/j.semnuclmed.2012.04.002 PubMedCrossRefGoogle Scholar
  112. 112.
    Becker S, Bohn P, Bouyeure-Petit A-C et al (2015) Bevacizumab enhances efficiency of radiotherapy in a lung adenocarcinoma rodent model: role of αvβ3 imaging in determining optimal window. Nucl Med Biol 42:923–930. doi: 10.1016/j.nucmedbio.2015.08.002 PubMedCrossRefGoogle Scholar
  113. 113.
    Hapani S, Sher A, Chu D, Wu S (2010) Increased risk of serious hemorrhage with bevacizumab in cancer patients: a meta-analysis. Oncology 79:27–38. doi: 10.1159/000314980 PubMedCrossRefGoogle Scholar
  114. 114.
    Nalluri SR, Chu D, Keresztes R et al (2008) Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis. JAMA 300:2277–2285. doi: 10.1001/jama.2008.656 PubMedCrossRefGoogle Scholar
  115. 115.
    Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8:592–603. doi: 10.1038/nrc2442 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Xian X, Håkansson J, Ståhlberg A et al (2006) Pericytes limit tumor cell metastasis. J Clin Invest 116:642–651. doi: 10.1172/JCI25705 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    García-Román J, Zentella-Dehesa A (2013) Vascular permeability changes involved in tumor metastasis. Cancer Lett 335:259–269. doi: 10.1016/j.canlet.2013.03.005 PubMedCrossRefGoogle Scholar
  118. 118.
    Thomas M, Augustin HG (2009) The role of the Angiopoietins in vascular morphogenesis. Angiogenesis 12:125–137. doi: 10.1007/s10456-009-9147-3 PubMedCrossRefGoogle Scholar
  119. 119.
    Witzenbichler B, Maisonpierre PC, Jones P et al (1998) Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J Biol Chem 273:18514–18521PubMedCrossRefGoogle Scholar
  120. 120.
    Jones N, Master Z, Jones J et al (1999) Identification of Tek/Tie2 binding partners. Binding to a multifunctional docking site mediates cell survival and migration. J Biol Chem 274:30896–30905PubMedCrossRefGoogle Scholar
  121. 121.
    Hayes AJ, Huang WQ, Mallah J et al (1999) Angiopoietin-1 and its receptor Tie-2 participate in the regulation of capillary-like tubule formation and survival of endothelial cells. Microvasc Res 58:224–237. doi: 10.1006/mvre.1999.2179 PubMedCrossRefGoogle Scholar
  122. 122.
    Teichert-Kuliszewska K, Maisonpierre PC, Jones N et al (2001) Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2. Cardiovasc Res 49:659–670PubMedCrossRefGoogle Scholar
  123. 123.
    Kwak HJ, So JN, Lee SJ et al (1999) Angiopoietin-1 is an apoptosis survival factor for endothelial cells. FEBS Lett 448:249–253PubMedCrossRefGoogle Scholar
  124. 124.
    Kim I, Kim JH, Moon SO et al (2000) Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Oncogene 19:4549–4552. doi: 10.1038/sj.onc.1203800 PubMedCrossRefGoogle Scholar
  125. 125.
    Holash J, Wiegand SJ, Yancopoulos GD (1999) New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18:5356–5362. doi: 10.1038/sj.onc.1203035 PubMedCrossRefGoogle Scholar
  126. 126.
    Nasarre P, Thomas M, Kruse K et al (2009) Host-derived angiopoietin-2 affects early stages of tumor development and vessel maturation but is dispensable for later stages of tumor growth. Cancer Res 69:1324–1333. doi: 10.1158/0008-5472.CAN-08-3030 PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Leow CC, Coffman K, Inigo I et al (2012) MEDI3617, a human anti-angiopoietin 2 monoclonal antibody, inhibits angiogenesis and tumor growth in human tumor xenograft models. Int J Oncol 40:1321–1330. doi: 10.3892/ijo.2012.1366 PubMedGoogle Scholar
  128. 128.
    Holopainen T, Saharinen P, D’Amico G et al (2012) Effects of angiopoietin-2-blocking antibody on endothelial cell-cell junctions and lung metastasis. J Natl Cancer Inst 104:461–475. doi: 10.1093/jnci/djs009 PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Peterson TE, Kirkpatrick ND, Huang Y et al (2016) Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proc Natl Acad Sci USA 113:4470–4475. doi: 10.1073/pnas.1525349113 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Kloepper J, Riedemann L, Amoozgar Z et al (2016) Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc Natl Acad Sci USA 113:4476–4481. doi: 10.1073/pnas.1525360113 PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Coxon A, Bready J, Min H et al (2010) Context-dependent role of angiopoietin-1 inhibition in the suppression of angiogenesis and tumor growth: implications for AMG 386, an angiopoietin-1/2-neutralizing peptibody. Mol Cancer Ther 9:2641–2651. doi: 10.1158/1535-7163.MCT-10-0213 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Mita AC, Takimoto CH, Mita M et al (2010) Phase 1 study of AMG 386, a selective angiopoietin 1/2-neutralizing peptibody, in combination with chemotherapy in adults with advanced solid tumors. Clin Cancer Res 16:3044–3056. doi: 10.1158/1078-0432.CCR-09-3368 PubMedCrossRefGoogle Scholar
  133. 133.
    Monk BJ, Poveda A, Vergote I et al (2016) Final results of a phase 3 study of trebananib plus weekly paclitaxel in recurrent ovarian cancer (TRINOVA-1): long-term survival, impact of ascites, and progression-free survival-2. Gynecol Oncol 143:27–34. doi: 10.1016/j.ygyno.2016.07.112 PubMedCrossRefGoogle Scholar
  134. 134.
    Goel S, Gupta N, Walcott BP et al (2013) Effects of vascular-endothelial protein tyrosine phosphatase inhibition on breast cancer vasculature and metastatic progression. J Natl Cancer Inst 105:1188–1201. doi: 10.1093/jnci/djt164 PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Park J-S, Kim I-K, Han S et al (2016) Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell 30:953–967. doi: 10.1016/j.ccell.2016.10.018 PubMedCrossRefGoogle Scholar
  136. 136.
    Chakroborty D, Sarkar C, Yu H et al (2011) Dopamine stabilizes tumor blood vessels by up-regulating angiopoietin 1 expression in pericytes and Kruppel-like factor-2 expression in tumor endothelial cells. Proc Natl Acad Sci USA 108:20730–20735. doi: 10.1073/pnas.1108696108 PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Al-Husein B, Goc A, Somanath PR (2013) Suppression of interactions between prostate tumor cell integrin αvβ3 and endothelial ICAM-1 by simvastatin inhibits prostate cancer micrometastasis. J Cell Physiol 228:2139. doi: 10.1002/jcp.24381 PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Heldin C-H (2013) Targeting the PDGF signaling pathway in tumor treatment. Cell Commun Signal CCS 11:97. doi: 10.1186/1478-811X-11-97 PubMedCrossRefGoogle Scholar
  139. 139.
    Huang J, Soffer SZ, Kim ES et al (2004) Vascular remodeling marks tumors that recur during chronic suppression of angiogenesis. Mol Cancer Res MCR 2:36–42PubMedGoogle Scholar
  140. 140.
    Bergers G, Song S, Meyer-Morse N et al (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287–1295. doi: 10.1172/JCI200317929 PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Erber R, Thurnher A, Katsen AD et al (2004) Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J 18:338–340. doi: 10.1096/fj.03-0271fje PubMedGoogle Scholar
  142. 142.
    Timke C, Zieher H, Roth A et al (2008) Combination of vascular endothelial growth factor receptor/platelet-derived growth factor receptor inhibition markedly improves radiation tumor therapy. Clin Cancer Res 14:2210–2219. doi: 10.1158/1078-0432.CCR-07-1893 PubMedCrossRefGoogle Scholar
  143. 143.
    Hawthorne T, Giot L, Blake L et al (2008) A phase I study of CR002, a fully-human monoclonal antibody against platelet-derived growth factor-D. Int J Clin Pharmacol Ther 46:236–244PubMedCrossRefGoogle Scholar
  144. 144.
    Jayson GC, Parker GJM, Mullamitha S et al (2005) Blockade of platelet-derived growth factor receptor-beta by CDP860, a humanized, PEGylated di-Fab’, leads to fluid accumulation and is associated with increased tumor vascularized volume. J Clin Oncol 23:973–981. doi: 10.1200/JCO.2005.01.032 PubMedCrossRefGoogle Scholar
  145. 145.
    Shen J, Vil MD, Prewett M et al (2009) Development of a fully human anti-PDGFRbeta antibody that suppresses growth of human tumor xenografts and enhances antitumor activity of an anti-VEGFR2 antibody. Neoplasia NY N 11:594–604CrossRefGoogle Scholar
  146. 146.
    Falcon BL, Pietras K, Chou J et al (2011) Increased vascular delivery and efficacy of chemotherapy after inhibition of platelet-derived growth factor-B. Am J Pathol 178:2920. doi: 10.1016/j.ajpath.2011.02.019 PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Lu C, Shahzad MMK, Moreno-Smith M et al (2010) Targeting pericytes with a PDGF-B aptamer in human ovarian carcinoma models. Cancer Biol Ther 9:176PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Davis DW, Takamori R, Raut CP et al (2005) Pharmacodynamic analysis of target inhibition and endothelial cell death in tumors treated with the vascular endothelial growth factor receptor antagonists SU5416 or SU6668. Clin Cancer Res 11:678–689PubMedCrossRefGoogle Scholar
  149. 149.
    Nisancioglu MH, Betsholtz C, Genové G (2010) The absence of pericytes does not increase the sensitivity of tumor vasculature to vascular endothelial growth factor-A blockade. Cancer Res 70:5109–5115. doi: 10.1158/0008-5472.CAN-09-4245 PubMedCrossRefGoogle Scholar
  150. 150.
    Kim J, de Sampaio PC, Lundy DM et al (2016) Heterogeneous perivascular cell coverage affects breast cancer metastasis and response to chemotherapy. JCI Insight 1:e90733. doi: 10.1172/jci.insight.90733 PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    McCarty MF, Somcio RJ, Stoeltzing O et al (2007) Overexpression of PDGF-BB decreases colorectal and pancreatic cancer growth by increasing tumor pericyte content. J Clin Invest 117:2114. doi: 10.1172/JCI31334 PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Reis M, Czupalla CJ, Ziegler N et al (2012) Endothelial Wnt/β-catenin signaling inhibits glioma angiogenesis and normalizes tumor blood vessels by inducing PDGF-B expression. J Exp Med 209:1611. doi: 10.1084/jem.20111580 PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Liu J, Liao S, Huang Y et al (2011) PDGF-D improves drug delivery and efficacy via vascular normalization, but promotes lymphatic metastasis by activating CXCR4 in breast cancer. Clin Cancer Res 17:3638–3648. doi: 10.1158/1078-0432.CCR-10-2456 PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Lamouille S, Mallet C, Feige J-J, Bailly S (2002) Activin receptor-like kinase 1 is implicated in the maturation phase of angiogenesis. Blood 100:4495–4501. doi: 10.1182/blood.V100.13.4495 PubMedCrossRefGoogle Scholar
  155. 155.
    Suzuki Y, Ohga N, Morishita Y et al (2010) BMP-9 induces proliferation of multiple types of endothelial cells in vitro and in vivo. J Cell Sci 123:1684–1692. doi: 10.1242/jcs.061556 PubMedCrossRefGoogle Scholar
  156. 156.
    Valdimarsdottir G, Goumans M-J, Rosendahl A et al (2002) Stimulation of Id1 expression by bone morphogenetic protein is sufficient and necessary for bone morphogenetic protein-induced activation of endothelial cells. Circulation 106:2263–2270PubMedCrossRefGoogle Scholar
  157. 157.
    Itoh F, Itoh S, Goumans M-J et al (2004) Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells. EMBO J 23:541–551. doi: 10.1038/sj.emboj.7600065 PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Larrivée B, Prahst C, Gordon E et al (2012) ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev Cell 22:489–500. doi: 10.1016/j.devcel.2012.02.005 PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Rostama B, Turner JE, Seavey GT et al (2015) DLL4/Notch1 and BMP9 interdependent signaling induces human endothelial cell quiescence via P27KIP1 and thrombospondin-1. Arterioscler Thromb Vasc Biol 35:2626–2637. doi: 10.1161/ATVBAHA.115.306541 PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Scharpfenecker M, van Dinther M, Liu Z et al (2007) BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 120:964–972. doi: 10.1242/jcs.002949 PubMedCrossRefGoogle Scholar
  161. 161.
    David L, Mallet C, Keramidas M et al (2008) Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ Res 102:914–922. doi: 10.1161/CIRCRESAHA.107.165530 PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Gupta S, Gill D, Pal SK, Agarwal N (2015) Activin receptor inhibitors–dalantercept. Curr Oncol Rep 17:14. doi: 10.1007/s11912-015-0441-5 PubMedCrossRefGoogle Scholar
  163. 163.
    Mitchell D, Pobre EG, Mulivor AW et al (2010) ALK1-Fc inhibits multiple mediators of angiogenesis and suppresses tumor growth. Mol Cancer Ther 9:379–388. doi: 10.1158/1535-7163.MCT-09-0650 PubMedCrossRefGoogle Scholar
  164. 164.
    Makker V, Filiaci VL, Chen L-M et al (2015) Phase II evaluation of dalantercept, a soluble recombinant activin receptor-like kinase 1 (ALK1) receptor fusion protein, for the treatment of recurrent or persistent endometrial cancer: an NRG Oncology/Gynecologic Oncology Group Study 0229N. Gynecol Oncol 138:24–29. doi: 10.1016/j.ygyno.2015.04.006 PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Wang X, Solban N, Khanna P et al (2016) Inhibition of ALK1 signaling with dalantercept combined with VEGFR TKI leads to tumor stasis in renal cell carcinoma. Oncotarget. doi: 10.18632/oncotarget.9621 Google Scholar
  166. 166.
    van Meeteren LA, Thorikay M, Bergqvist S et al (2012) Anti-human activin receptor-like kinase 1 (ALK1) antibody attenuates bone morphogenetic protein 9 (BMP9)-induced ALK1 signaling and interferes with endothelial cell sprouting. J Biol Chem 287:18551–18561. doi: 10.1074/jbc.M111.338103 PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Necchi A, Giannatempo P, Mariani L et al (2014) PF-03446962, a fully-human monoclonal antibody against transforming growth-factor β (TGFβ) receptor ALK1, in pre-treated patients with urothelial cancer: an open label, single-group, phase 2 trial. Invest New Drugs 32:555–560. doi: 10.1007/s10637-014-0074-9 PubMedCrossRefGoogle Scholar
  168. 168.
    Wilson CW, Ye W (2014) Regulation of vascular endothelial junction stability and remodeling through Rap1-Rasip1 signaling. Cell Adhes Migr 8:76–83CrossRefGoogle Scholar
  169. 169.
    Maharjan S, Kim K, Agrawal V et al (2013) Sac-1004, a novel vascular leakage blocker, enhances endothelial barrier through the cAMP/Rac/cortactin pathway. Biochem Biophys Res Commun 435:420–427. doi: 10.1016/j.bbrc.2013.04.104 PubMedCrossRefGoogle Scholar
  170. 170.
    Agrawal V, Maharjan S, Kim K et al (2014) Direct endothelial junction restoration results in significant tumor vascular normalization and metastasis inhibition in mice. Oncotarget 5:2761–2777PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Lee K, Agrawal V, Kim K et al (2014) Combined effect of vascular-leakage-blocker Sac-1004 and antiangiogenic drug sunitinib on tumor angiogenesis. Biochem Biophys Res Commun 450:1320–1326. doi: 10.1016/j.bbrc.2014.06.139 PubMedCrossRefGoogle Scholar
  172. 172.
    Loboda A, Jozkowicz A, Dulak J (2010) HIF-1 and HIF-2 transcription factors–similar but not identical. Mol Cells 29:435–442. doi: 10.1007/s10059-010-0067-2 PubMedCrossRefGoogle Scholar
  173. 173.
    Skuli N, Liu L, Runge A et al (2009) Endothelial deletion of hypoxia-inducible factor-2alpha (HIF-2alpha) alters vascular function and tumor angiogenesis. Blood 114:469–477. doi: 10.1182/blood-2008-12-193581 PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Le Bras A, Lionneton F, Mattot V et al (2007) HIF-2alpha specifically activates the VE-cadherin promoter independently of hypoxia and in synergy with Ets-1 through two essential ETS-binding sites. Oncogene 26:7480–7489. doi: 10.1038/sj.onc.1210566 PubMedCrossRefGoogle Scholar
  175. 175.
    Kleibeuker EA, Fokas E, Allen PD et al (2016) Low dose angiostatic treatment counteracts radiotherapy-induced tumor perfusion and enhances the anti-tumor effect. Oncotarget. doi: 10.18632/oncotarget.12814 Google Scholar
  176. 176.
    Zhang B, Shi W, Jiang T et al (2016) Optimization of the tumor microenvironment and nanomedicine properties simultaneously to improve tumor therapy. Oncotarget 7:62607–62618. doi: 10.18632/oncotarget.11546 PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Maes H, Kuchnio A, Peric A et al (2014) Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell 26:190–206. doi: 10.1016/j.ccr.2014.06.025 PubMedCrossRefGoogle Scholar
  178. 178.
    Liu F, Wang P, Jiang X et al (2008) Antisense hypoxia-inducible factor 1alpha gene therapy enhances the therapeutic efficacy of doxorubicin to combat hepatocellular carcinoma. Cancer Sci 99:2055–2061. doi: 10.1111/j.1349-7006.2008.00905.x PubMedGoogle Scholar
  179. 179.
    Daskalow K, Rohwer N, Raskopf E et al (2010) Role of hypoxia-inducible transcription factor 1alpha for progression and chemosensitivity of murine hepatocellular carcinoma. J Mol Med Berl Ger 88:817–827. doi: 10.1007/s00109-010-0623-4 CrossRefGoogle Scholar
  180. 180.
    Choi SH, Shin HW, Park JY et al (2010) Effects of the knockdown of hypoxia inducible factor-1α expression by adenovirus-mediated shRNA on angiogenesis and tumor growth in hepatocellular carcinoma cell lines. Korean J Hepatol 16:280–287. doi: 10.3350/kjhep.2010.16.3.280 PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Choi SH, Kwon O-J, Park JY et al (2014) Inhibition of tumour angiogenesis and growth by small hairpin HIF-1α and IL-8 in hepatocellular carcinoma. Liver Int 34:632–642. doi: 10.1111/liv.12375 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Hôpital Maisonneuve-Rosement Research CentreMontrealCanada
  2. 2.Department of OphthalmologyUniversité de MontréalMontrealCanada

Personalised recommendations