Advertisement

Angiogenesis

, Volume 20, Issue 3, pp 385–398 | Cite as

Pro-angiogenic capacities of microvesicles produced by skin wound myofibroblasts

  • Mays Merjaneh
  • Amélie Langlois
  • Sébastien Larochelle
  • Chanel Beaudoin Cloutier
  • Sylvie Ricard-Blum
  • Véronique J. Moulin
Original Paper

Abstract

Wound healing is a very highly organized process where numerous cell types are tightly regulated to restore injured tissue. Myofibroblasts are cells that produce new extracellular matrix and contract wound edges. We previously reported that the human myofibroblasts isolated from normal wound (WMyos) produced microvesicles (MVs) in the presence of the serum. In this study, MVs were further characterized using a proteomic strategy and potential functions of the MVs were determined. MV proteins isolated from six WMyo populations were separated using two-dimensional differential gel electrophoresis. Highly conserved spots were selected and analyzed using mass spectrometry resulting in the identification of 381 different human proteins. Using the DAVID database, clusters of proteins involved in cell motion, apoptosis and adhesion, but also in extracellular matrix production (21 proteins, enrichment score: 3.32) and in blood vessel development/angiogenesis (19 proteins, enrichment score: 2.66) were identified. Another analysis using the functional enrichment analysis tool FunRich was consistent with these results. While the action of the myofibroblasts on extracellular matrix formation is well known, their angiogenic potential is less studied. To further characterize the angiogenic activity of the MVs, they were added to cultured microvascular endothelial cells to evaluate their influence on cell growth and migration using scratch test and capillary-like structure formation in Matrigel®. The addition of a MV-enriched preparation significantly increased endothelial cell growth, migration and capillary formation compared with controls. The release of microvesicles by the wound myofibroblasts brings new perspectives to the field of communication between cells during the normal healing process.

Keywords

Angiogenesis Microvesicle Myofibroblast Proteomic Endothelial cells Healing Skin Human 

Notes

Acknowledgements

This work was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) (RGPIN-2014-04404); Le Réseau de Thérapie Cellulaire et Tissulaire du FRQS (ThéCell). MM was recipient of a Soeurs Mallet fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10456_2017_9554_MOESM1_ESM.pdf (98 kb)
Supplementary material 1 (PDF 98 kb)
10456_2017_9554_MOESM2_ESM.pdf (4.4 mb)
Supplementary material 2 (PDF 4500 kb)

References

  1. 1.
    Freyssinet JM (2003) Cellular microparticles: what are they bad or good for? J Thromb Haemost 1(7):1655–1662CrossRefPubMedGoogle Scholar
  2. 2.
    Mause SF, Weber C (2010) Microparticles: protagonists of a novel communication network for intercellular information exchange. Circul Res 107(9):1047–1057. doi: 10.1161/CIRCRESAHA.110.226456 CrossRefGoogle Scholar
  3. 3.
    Agouni A, Lagrue-Lak-Hal AH, Ducluzeau PH, Mostefai HA, Draunet-Busson C, Leftheriotis G, Heymes C, Martinez MC, Andriantsitohaina R (2008) Endothelial dysfunction caused by circulating microparticles from patients with metabolic syndrome. Am J Pathol 173(4):1210–1219. doi: 10.2353/ajpath.2008.080228 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME, Massarotti EM, Remold-O’Donnell E, Farndale RW, Ware J, Lee DM (2010) Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327(5965):580–583. doi: 10.1126/science.1181928 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Munster M, Fremder E, Miller V, Ben-Tsedek N, Davidi S, Scherer SJ, Shaked Y (2014) Anti-VEGF-A affects the angiogenic properties of tumor-derived microparticles. PLoS ONE 9(4):e95983. doi: 10.1371/journal.pone.0095983 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lemoinne S, Cadoret A, Rautou PE, El Mourabit H, Ratziu V, Corpechot C, Rey C, Bosselut N, Barbu V, Wendum D, Feldmann G, Boulanger C, Henegar C, Housset C, Thabut D (2015) Portal myofibroblasts promote vascular remodeling underlying cirrhosis formation through the release of microparticles. Hepatology 61(3):1041–1055. doi: 10.1002/hep.27318 CrossRefPubMedGoogle Scholar
  7. 7.
    Mao G, Liu Y, Fang X, Liu Y, Fang L, Lin L, Liu X, Wang N (2015) Tumor-derived microRNA-494 promotes angiogenesis in non-small cell lung cancer. Angiogenesis 18(3):373–382. doi: 10.1007/s10456-015-9474-5 CrossRefPubMedGoogle Scholar
  8. 8.
    Belik D, Tsang H, Wharton J, Howard L, Bernabeu C, Wojciak-Stothard B (2016) Endothelium-derived microparticles from chronically thromboembolic pulmonary hypertensive patients facilitate endothelial angiogenesis. J Biomed Sci 23:4. doi: 10.1186/s12929-016-0224-9 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tetta C, Bruno S, Fonsato V, Deregibus MC, Camussi G (2011) The role of microvesicles in tissue repair. Organogenesis 7(2):105–115. doi: 10.4161/org.7.2.15782 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bastos-Amador P, Royo F, Gonzalez E, Conde-Vancells J, Palomo-Diez L, Borras FE, Falcon-Perez JM (2012) Proteomic analysis of microvesicles from plasma of healthy donors reveals high individual variability. J Proteom 75(12):3574–3584. doi: 10.1016/j.jprot.2012.03.054 CrossRefGoogle Scholar
  11. 11.
    Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, Morando L, Busca A, Falda M, Bussolati B, Tetta C, Camussi G (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20(5):1053–1067. doi: 10.1681/ASN.2008070798 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Moulin V (1995) Growth factors in skin wound healing. Eur J Cell Biol 68:1–7PubMedGoogle Scholar
  13. 13.
    Moulin V, Castilloux G, Auger FA, Garrel D, O’Connor-McCourt M, Germain L (1998) Modulated response to cytokines of human wound healing myofibroblasts compared to dermal fibroblasts. Exp Cell Res 238:283–293CrossRefPubMedGoogle Scholar
  14. 14.
    Moulin VJ, Mayrand D, Messier H, Martinez MC, Lopez-Valle CA, Genest H (2010) Shedding of microparticles by myofibroblasts as mediator of cellular cross-talk during normal wound healing. J Cell Physiol 225:734–740CrossRefPubMedGoogle Scholar
  15. 15.
    Beltramo E, Lopatina T, Berrone E, Mazzeo A, Iavello A, Camussi G, Porta M (2014) Extracellular vesicles derived from mesenchymal stem cells induce features of diabetic retinopathy in vitro. Acta Diabetol 51(6):1055–1064. doi: 10.1007/s00592-014-0672-1 CrossRefPubMedGoogle Scholar
  16. 16.
    Kang T, Jones TM, Naddell C, Bacanamwo M, Calvert JW, Thompson WE, Bond VC, Chen YE, Liu D (2016) Adipose-derived stem cells induce angiogenesis via microvesicle transport of miRNA-31. Stem Cells Transl Med 5(4):440–450. doi: 10.5966/sctm.2015-0177 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Castellana D, Toti F, Freyssinet JM (2010) Membrane microvesicles: macromessengers in cancer disease and progression. Thromb Res 125(Suppl 2):S84–S88. doi: 10.1016/S0049-3848(10)70021-9 CrossRefPubMedGoogle Scholar
  18. 18.
    Distler JH, Huber LC, Gay S, Distler O, Pisetsky DS (2006) Microparticles as mediators of cellular cross-talk in inflammatory disease. Autoimmunity 39(8):683–690. doi: 10.1080/08916930601061538 CrossRefPubMedGoogle Scholar
  19. 19.
    Moulin V, Garrel D, Auger FA, O’Connor-McCourt M, Castilloux G, Germain L (1999) What’s new in human wound healing myofibroblasts? Curr Top Pathol 93:123–133CrossRefPubMedGoogle Scholar
  20. 20.
    Germain L, Jean A, Auger F, Garrel DR (1994) Human wound healing fibroblasts have greater contractile properties than dermal fibroblasts. J Surg Res 57:268–273CrossRefPubMedGoogle Scholar
  21. 21.
    Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25(9):1327–1333. doi: 10.1002/elps.200305844 CrossRefPubMedGoogle Scholar
  22. 22.
    Li T, Dai S, Wang Z, Zhang H (2010) Improved disc SDS-PAGE for extraction of low molecular weight proteins from serum. Electrophoresis 31(6):1090–1096. doi: 10.1002/elps.200900423 PubMedGoogle Scholar
  23. 23.
    Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74(20):5383–5392CrossRefPubMedGoogle Scholar
  24. 24.
    Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75(17):4646–4658CrossRefPubMedGoogle Scholar
  25. 25.
    da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. doi: 10.1038/nprot.2008.211 CrossRefGoogle Scholar
  26. 26.
    Pathan M, Keerthikumar S, Ang CS, Gangoda L, Quek CY, Williamson NA, Mouradov D, Sieber OM, Simpson RJ, Salim A, Bacic A, Hill AF, Stroud DA, Ryan MT, Agbinya JI, Mariadason JM, Burgess AW, Mathivanan S (2015) FunRich: an open access standalone functional enrichment and interaction network analysis tool. Proteomics 15(15):2597–2601. doi: 10.1002/pmic.201400515 CrossRefPubMedGoogle Scholar
  27. 27.
    Mayrand D, Laforce-Lavoie A, Larochelle S, Langlois A, Genest H, Roy M, Moulin V (2012) Angiogenic properties of myofibroblasts isolated from normal human skin wounds. Angiogenesis 15:199–212CrossRefPubMedGoogle Scholar
  28. 28.
    Scherrer B (1984) Biostatistique. Morin, G., MontrealGoogle Scholar
  29. 29.
    Abid Hussein MN, Boing AN, Biro E, Hoek FJ, Vogel GM, Meuleman DG, Sturk A, Nieuwland R (2007) Phospholipid composition of in vitro endothelial microparticles and their in vivo thrombogenic properties. Thromb Res 121(6):865–871CrossRefPubMedGoogle Scholar
  30. 30.
    Gabbiani G (2003) The myofibroblast in wound healing and fibrocontractive diseases. J Pathol 200(4):500–503CrossRefPubMedGoogle Scholar
  31. 31.
    de Wever O, Demetter P, Mareel M, Bracke M (2008) Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 123:2229–2238CrossRefPubMedGoogle Scholar
  32. 32.
    Ronnov-Jessen L, Van Deurs B, Nielsen M, Petersen OW (1992) Identification, paracrine generation, and possible function of human breast carcinoma myofibroblasts in culture. In Vitro Cell Dev Biol Anim 28A:273–283CrossRefGoogle Scholar
  33. 33.
    Moulin VJ (2016) The role of myofibroblasts in normal skin wound healing. In: Martinez A (ed) Myofibroblasts: origin, function and role in disease. Cell biology research progress. Nova Science Publishers, Hauppauge, NY, pp 1–12Google Scholar
  34. 34.
    Kreimer S, Belov AM, Ghiran I, Murthy SK, Frank DA, Ivanov AR (2015) Mass-spectrometry-based molecular characterization of extracellular vesicles: lipidomics and proteomics. J Proteome Res 14(6):2367–2384. doi: 10.1021/pr501279t CrossRefPubMedGoogle Scholar
  35. 35.
    Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C, Gho YS, Kurochkin IV, Mathivanan S, Quesenberry P, Sahoo S, Tahara H, Wauben MH, Witwer KW, Thery C (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3:26913. doi: 10.3402/jev.v3.26913 CrossRefPubMedGoogle Scholar
  36. 36.
    Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D (2005) Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res 67(1):30–38CrossRefPubMedGoogle Scholar
  37. 37.
    Ji H, Erfani N, Tauro BJ, Kapp EA, Zhu HJ, Moritz RL, Lim JW, Simpson RJ (2008) Difference gel electrophoresis analysis of Ras-transformed fibroblast cell-derived exosomes. Electrophoresis 29(12):2660–2671. doi: 10.1002/elps.200800015 CrossRefPubMedGoogle Scholar
  38. 38.
    Shai E, Varon D (2011) Development, cell differentiation, angiogenesis–microparticles and their roles in angiogenesis. Atertioscler Thromb Vasc Biol 31(1):10–14. doi: 10.1161/ATVBAHA.109.200980 CrossRefGoogle Scholar
  39. 39.
    Lopatina T, Bruno S, Tetta C, Kalinina N, Porta M, Camussi G (2014) Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. Cell Commun Signal (CCS) 12:26. doi: 10.1186/1478-811X-12-26 CrossRefGoogle Scholar
  40. 40.
    Li J, Zhang Y, Liu Y, Dai X, Li W, Cai X, Yin Y, Wang Q, Xue Y, Wang C, Li D, Hou D, Jiang X, Zhang J, Zen K, Chen X, Zhang CY (2013) Microvesicle-mediated transfer of microRNA-150 from monocytes to endothelial cells promotes angiogenesis. J Biol Chem 288(32):23586–23596. doi: 10.1074/jbc.M113.489302 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Mays Merjaneh
    • 1
  • Amélie Langlois
    • 1
  • Sébastien Larochelle
    • 1
  • Chanel Beaudoin Cloutier
    • 2
  • Sylvie Ricard-Blum
    • 3
  • Véronique J. Moulin
    • 1
  1. 1.Centre de recherche en organogenese experimentale de l’Université Laval/LOEX, Centre de recherche du CHU de Quebec and Surgery Department, Faculty of MedicineUniversite LavalQuebec CityCanada
  2. 2.CHU de QuébecQuebec CityCanada
  3. 3.Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 Université Lyon 1, CNRS, INSA Lyon, CPE LyonVilleurbanneFrance

Personalised recommendations