Angiogenesis

, Volume 20, Issue 2, pp 185–204 | Cite as

Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy?

  • Rakesh R. Ramjiawan
  • Arjan W. Griffioen
  • Dan G. Duda
Review Paper

Abstract

Angiogenesis is defined as the formation of new blood vessels from preexisting vessels and has been characterized as an essential process for tumor cell proliferation and viability. This has led to the development of pharmacological agents for anti-angiogenesis to disrupt the vascular supply and starve tumor of nutrients and oxygen, primarily through blockade of VEGF/VEGFR signaling. This effort has resulted in 11 anti-VEGF drugs approved for certain advanced cancers, alone or in combination with chemotherapy or other targeted therapies. But this success had only limited impact on overall survival of cancer patients and rarely resulted in durable responses. Given the recent success of immunotherapies, combinations of anti-angiogenics with immune checkpoint blockers have become an attractive strategy. However, implementing such combinations will require a better mechanistic understanding of their interaction. Due to overexpression of pro-angiogenic factors in tumors, their vasculature is often tortuous and disorganized, with excessively branched leaky vessels. This enhances vascular permeability, which in turn is associated with high interstitial fluid pressure, and a reduction in blood perfusion and oxygenation. Judicious dosing of anti-angiogenic treatment can transiently normalize the tumor vasculature by decreasing vascular permeability and improving tumor perfusion and blood flow, and synergize with immunotherapy in this time window. However, anti-angiogenics may also excessively prune tumor vessels in a dose and time-dependent manner, which induces hypoxia and immunosuppression, including increased expression of the immune checkpoint programmed death receptor ligand (PD-L1). This review focuses on revisiting the concept of anti-angiogenesis in combination with immunotherapy as a strategy for cancer treatment.

Keywords

Antiangiogenesis Immunotherapy VEGF Normalization Hypoxia PD-1 

Notes

Acknowledgements

We would like to thank Nisha Gupta, Echoe Bouta and Patrycja Nowak-Sliwinka for helpful comments and Lance L. Munn for providing the illustration. We apologize to authors whose original work we could not cite due to limitations on the number of references.

Funding

RRR received funding from Dutch Cancer Society (KWF), Stichting Nijbakker-Morra, Stichting Bekker-La-Bastide Fonds, Dittmer Fonds, VU Fondsendesk. DGD’s work was supported through NIH Grants P01-CA080124, R01-CA159258, R21-CA139168 and Proton Beam/Federal Share Program, and the American Cancer Society Grant 120733-RSG-11-073-01-TBG.

Compliance with ethical standards

Conflict of interest

DGD receives research funding from Merrimack, Leap Tx, Bristol-Myers Squibb and Bayer.

References

  1. 1.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70PubMedCrossRefGoogle Scholar
  2. 2.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi: 10.1016/j.cell.2011.02.013 PubMedCrossRefGoogle Scholar
  3. 3.
    Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegue E, Song H, Vandenberg S, Johnson RS, Werb Z, Bergers G (2008) HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13(3):206–220. doi: 10.1016/j.ccr.2008.01.034 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Dulloo I, Phang BH, Othman R, Tan SY, Vijayaraghavan A, Goh LK, Martin-Lopez M, Marques MM, Li CW, de Wang Y, Marin MC, Xian W, McKeon F, Sabapathy K (2015) Hypoxia-inducible TAp73 supports tumorigenesis by regulating the angiogenic transcriptome. Nat Cell Biol 17(4):511–523. doi: 10.1038/ncb3130 PubMedCrossRefGoogle Scholar
  5. 5.
    Gupta N, Duda DG (2016) Role of stromal cell-derived factor 1alpha pathway in bone metastatic prostate cancer. J Biomed Res 30(3):181–185. doi: 10.7555/JBR.30.20150114 PubMedGoogle Scholar
  6. 6.
    Petit I, Jin D, Rafii S (2007) The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol 28(7):299–307. doi: 10.1016/j.it.2007.05.007 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Salceda S, Caro J (1997) Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272(36):22642–22647PubMedCrossRefGoogle Scholar
  8. 8.
    Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S, Fuh G, Gerber HP, Ferrara N (2007) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b + Gr1 + myeloid cells. Nat Biotechnol 25(8):911–920. doi: 10.1038/nbt1323 PubMedCrossRefGoogle Scholar
  9. 9.
    Folkman J, Merler E, Abernathy C, Williams G (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133(2):275–288PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438(7070):967–974. doi: 10.1038/nature04483 PubMedCrossRefGoogle Scholar
  11. 11.
    Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27–31PubMedCrossRefGoogle Scholar
  12. 12.
    Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6(4):273–286. doi: 10.1038/nrd2115 PubMedCrossRefGoogle Scholar
  13. 13.
    Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358(19):2039–2049. doi: 10.1056/NEJMra0706596 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284PubMedCrossRefGoogle Scholar
  15. 15.
    Huang Y, Goel S, Duda DG, Fukumura D, Jain RK (2013) Vascular normalization as an emerging strategy to enhance cancer immunotherapy. Cancer Res 73(10):2943–2948. doi: 10.1158/0008-5472.CAN-12-4354 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Dvorak HF (2002) Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20(21):4368–4380. doi: 10.1200/JCO.2002.10.088 PubMedCrossRefGoogle Scholar
  17. 17.
    Bartels K, Grenz A, Eltzschig HK (2013) Hypoxia and inflammation are two sides of the same coin. Proc Natl Acad Sci USA 110(46):18351–18352. doi: 10.1073/pnas.1318345110 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Krock BL, Skuli N, Simon MC (2011) Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2(12):1117–1133. doi: 10.1177/1947601911423654 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9(6):685–693. doi: 10.1038/nm0603-685 PubMedCrossRefGoogle Scholar
  20. 20.
    Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364PubMedCrossRefGoogle Scholar
  21. 21.
    Cooke VG, LeBleu VS, Keskin D, Khan Z, O’Connell JT, Teng Y, Duncan MB, Xie L, Maeda G, Vong S, Sugimoto H, Rocha RM, Damascena A, Brentani RR, Kalluri R (2012) Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell 21(1):66–81. doi: 10.1016/j.ccr.2011.11.024 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Chen XL, Nam JO, Jean C, Lawson C, Walsh CT, Goka E, Lim ST, Tomar A, Tancioni I, Uryu S, Guan JL, Acevedo LM, Weis SM, Cheresh DA, Schlaepfer DD (2012) VEGF-induced vascular permeability is mediated by FAK. Dev Cell 22(1):146–157. doi: 10.1016/j.devcel.2011.11.002 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Jain RK, Booth MF (2003) What brings pericytes to tumor vessels? J Clin Invest 112(8):1134–1136. doi: 10.1172/JCI20087 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Zhu AX, Duda DG, Sahani DV, Jain RK (2011) HCC and angiogenesis: possible targets and future directions. Nat Rev Clin Oncol 8(5):292–301. doi: 10.1038/nrclinonc.2011.30 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62. doi: 10.1126/science.1104819 PubMedCrossRefGoogle Scholar
  26. 26.
    Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7(9):987–989. doi: 10.1038/nm0901-987 PubMedCrossRefGoogle Scholar
  27. 27.
    Jain RK, Duda DG, Willett CG, Sahani DV, Zhu AX, Loeffler JS, Batchelor TT, Sorensen AG (2009) Biomarkers of response and resistance to antiangiogenic therapy. Nat Rev Clin Oncol 6(6):327–338. doi: 10.1038/nrclinonc.2009.63 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11(6):393–410. doi: 10.1038/nrc3064 PubMedCrossRefGoogle Scholar
  29. 29.
    Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol 31(17):2205–2218. doi: 10.1200/JCO.2012.46.3653 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kabbinavar F, Hurwitz HI, Fehrenbacher L, Meropol NJ, Novotny WF, Lieberman G, Griffing S, Bergsland E (2003) Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 21(1):60–65. doi: 10.1200/JCO.2003.10.066 PubMedCrossRefGoogle Scholar
  31. 31.
    Heist RS, Duda DG, Sahani DV, Ancukiewicz M, Fidias P, Sequist LV, Temel JS, Shaw AT, Pennell NA, Neal JW, Gandhi L, Lynch TJ, Engelman JA, Jain RK (2015) Improved tumor vascularization after anti-VEGF therapy with carboplatin and nab-paclitaxel associates with survival in lung cancer. Proc Natl Acad Sci USA 112(5):1547–1552. doi: 10.1073/pnas.1424024112 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS, Kozak KR, Cahill DP, Chen PJ, Zhu M, Ancukiewicz M, Mrugala MM, Plotkin S, Drappatz J, Louis DN, Ivy P, Scadden DT, Benner T, Loeffler JS, Wen PY, Jain RK (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11(1):83–95. doi: 10.1016/j.ccr.2006.11.021 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Tolaney SM, Boucher Y, Duda DG, Martin JD, Seano G, Ancukiewicz M, Barry WT, Goel S, Lahdenrata J, Isakoff SJ, Yeh ED, Jain SR, Golshan M, Brock J, Snuderl M, Winer EP, Krop IE, Jain RK (2015) Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. Proc Natl Acad Sci USA 112(46):14325–14330. doi: 10.1073/pnas.1518808112 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Cameron D, Brown J, Dent R, Jackisch C, Mackey J, Pivot X, Steger GG, Suter TM, Toi M, Parmar M, Laeufle R, Im YH, Romieu G, Harvey V, Lipatov O, Pienkowski T, Cottu P, Chan A, Im SA, Hall PS, Bubuteishvili-Pacaud L, Henschel V, Deurloo RJ, Pallaud C, Bell R (2013) Adjuvant bevacizumab-containing therapy in triple-negative breast cancer (BEATRICE): primary results of a randomised, phase 3 trial. Lancet Oncol 14(10):933–942. doi: 10.1016/S1470-2045(13)70335-8 PubMedCrossRefGoogle Scholar
  35. 35.
    Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2(10):795–803. doi: 10.1038/nrc909 PubMedCrossRefGoogle Scholar
  36. 36.
    Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676. doi: 10.1038/nm0603-669 PubMedCrossRefGoogle Scholar
  37. 37.
    Staton CA, Kumar I, Reed MW, Brown NJ (2007) Neuropilins in physiological and pathological angiogenesis. J Pathol 212(3):237–248. doi: 10.1002/path.2182 PubMedCrossRefGoogle Scholar
  38. 38.
    Hattori K, Heissig B, Wu Y, Dias S, Tejada R, Ferris B, Hicklin DJ, Zhu Z, Bohlen P, Witte L, Hendrikx J, Hackett NR, Crystal RG, Moore MA, Werb Z, Lyden D, Rafii S (2002) Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med 8(8):841–849. doi: 10.1038/nm740 PubMedPubMedCentralGoogle Scholar
  39. 39.
    Snuderl M, Batista A, Kirkpatrick ND, Ruiz de Almodovar C, Riedemann L, Walsh EC, Anolik R, Huang Y, Martin JD, Kamoun W, Knevels E, Schmidt T, Farrar CT, Vakoc BJ, Mohan N, Chung E, Roberge S, Peterson T, Bais C, Zhelyazkova BH, Yip S, Hasselblatt M, Rossig C, Niemeyer E, Ferrara N, Klagsbrun M, Duda DG, Fukumura D, Xu L, Carmeliet P, Jain RK (2013) Targeting placental growth factor/neuropilin 1 pathway inhibits growth and spread of medulloblastoma. Cell 152(5):1065–1076. doi: 10.1016/j.cell.2013.01.036 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Jain RK, Xu L (2007) alphaPlGF: a new kid on the antiangiogenesis block. Cell 131(3):443–445. doi: 10.1016/j.cell.2007.10.023 PubMedCrossRefGoogle Scholar
  41. 41.
    Lampropoulou A, Ruhrberg C (2014) Neuropilin regulation of angiogenesis. Biochem Soc Trans 42(6):1623–1628. doi: 10.1042/BST20140244 PubMedCrossRefGoogle Scholar
  42. 42.
    Wu FT, Stefanini MO, Mac Gabhann F, Kontos CD, Annex BH, Popel AS (2010) A systems biology perspective on sVEGFR1: its biological function, pathogenic role and therapeutic use. J Cell Mol Med 14(3):528–552. doi: 10.1111/j.1582-4934.2009.00941.x PubMedGoogle Scholar
  43. 43.
    Dawson MR, Duda DG, Fukumura D, Jain RK (2009) VEGFR1-activity-independent metastasis formation. Nature 461 (7262):E4; discussion E5. doi: 10.1038/nature08254
  44. 44.
    Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277(5322):55–60PubMedCrossRefGoogle Scholar
  45. 45.
    Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87(7):1171–1180PubMedCrossRefGoogle Scholar
  46. 46.
    Udani V, Santarelli J, Yung Y, Cheshier S, Andrews A, Kasad Z, Tse V (2005) Differential expression of angiopoietin-1 and angiopoietin-2 may enhance recruitment of bone-marrow-derived endothelial precursor cells into brain tumors. Neurol Res 27(8):801–806. doi: 10.1179/016164105X49319 PubMedCrossRefGoogle Scholar
  47. 47.
    Goel S, Gupta N, Walcott BP, Snuderl M, Kesler CT, Kirkpatrick ND, Heishi T, Huang Y, Martin JD, Ager E, Samuel R, Wang S, Yazbek J, Vakoc BJ, Peterson RT, Padera TP, Duda DG, Fukumura D, Jain RK (2013) Effects of vascular-endothelial protein tyrosine phosphatase inhibition on breast cancer vasculature and metastatic progression. J Natl Cancer Inst 105(16):1188–1201. doi: 10.1093/jnci/djt164 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Gu J, Yamamoto H, Ogawa M, Ngan CY, Danno K, Hemmi H, Kyo N, Takemasa I, Ikeda M, Sekimoto M, Monden M (2006) Hypoxia-induced up-regulation of angiopoietin-2 in colorectal cancer. Oncol Rep 15(4):779–783PubMedGoogle Scholar
  49. 49.
    Rigamonti N, De Palma M (2013) A role for angiopoietin-2 in organ-specific metastasis. Cell Rep 4(4):621–623. doi: 10.1016/j.celrep.2013.07.034 PubMedCrossRefGoogle Scholar
  50. 50.
    Kloepper J, Riedemann L, Amoozgar Z, Seano G, Susek K, Yu V, Dalvie N, Amelung RL, Datta M, Song JW, Askoxylakis V, Taylor JW, Lu-Emerson C, Batista A, Kirkpatrick ND, Jung K, Snuderl M, Muzikansky A, Stubenrauch KG, Krieter O, Wakimoto H, Xu L, Munn LL, Duda DG, Fukumura D, Batchelor TT, Jain RK (2016) Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc Natl Acad Sci USA 113(16):4476–4481. doi: 10.1073/pnas.1525360113 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK (2011) Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91(3):1071–1121. doi: 10.1152/physrev.00038.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Reynolds AR, Hart IR, Watson AR, Welti JC, Silva RG, Robinson SD, Da Violante G, Gourlaouen M, Salih M, Jones MC, Jones DT, Saunders G, Kostourou V, Perron-Sierra F, Norman JC, Tucker GC, Hodivala-Dilke KM (2009) Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat Med 15(4):392–400. doi: 10.1038/nm.1941 PubMedCrossRefGoogle Scholar
  53. 53.
    Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. doi: 10.1038/nature10144 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD, Wiegand SJ (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA 104(9):3219–3224. doi: 10.1073/pnas.0611206104 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe ML, Kalen M, Gerhardt H, Betsholtz C (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129):776–780. doi: 10.1038/nature05571 PubMedCrossRefGoogle Scholar
  56. 56.
    Hiratsuka S, Goel S, Kamoun WS, Maru Y, Fukumura D, Duda DG, Jain RK (2011) Endothelial focal adhesion kinase mediates cancer cell homing to discrete regions of the lungs via E-selectin up-regulation. Proc Natl Acad Sci USA 108(9):3725–3730. doi: 10.1073/pnas.1100446108 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Eliceiri BP, Puente XS, Hood JD, Stupack DG, Schlaepfer DD, Huang XZ, Sheppard D, Cheresh DA (2002) Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling. J Cell Biol 157(1):149–160. doi: 10.1083/jcb.200109079 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lietha D, Cai X, Ceccarelli DF, Li Y, Schaller MD, Eck MJ (2007) Structural basis for the autoinhibition of focal adhesion kinase. Cell 129(6):1177–1187. doi: 10.1016/j.cell.2007.05.041 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Canel M, Serrels A, Miller D, Timpson P, Serrels B, Frame MC, Brunton VG (2010) Quantitative in vivo imaging of the effects of inhibiting integrin signaling via Src and FAK on cancer cell movement: effects on E-cadherin dynamics. Cancer Res 70(22):9413–9422. doi: 10.1158/0008-5472.CAN-10-1454 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442. doi: 10.1038/380439a0 PubMedCrossRefGoogle Scholar
  61. 61.
    Lieu CH, Tran H, Jiang ZQ, Mao M, Overman MJ, Lin E, Eng C, Morris J, Ellis L, Heymach JV, Kopetz S (2013) The association of alternate VEGF ligands with resistance to anti-VEGF therapy in metastatic colorectal cancer. PLoS ONE 8(10):e77117. doi: 10.1371/journal.pone.0077117 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Ferrara N, Hillan KJ, Novotny W (2005) Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 333(2):328–335. doi: 10.1016/j.bbrc.2005.05.132 PubMedCrossRefGoogle Scholar
  63. 63.
    Willett CG, Duda DG, di Tomaso E, Boucher Y, Ancukiewicz M, Sahani DV, Lahdenranta J, Chung DC, Fischman AJ, Lauwers GY, Shellito P, Czito BG, Wong TZ, Paulson E, Poleski M, Vujaskovic Z, Bentley R, Chen HX, Clark JW, Jain RK (2009) Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. J Clin Oncol 27(18):3020–3026. doi: 10.1200/JCO.2008.21.1771 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Miller KD, Chap LI, Holmes FA, Cobleigh MA, Marcom PK, Fehrenbacher L, Dickler M, Overmoyer BA, Reimann JD, Sing AP, Langmuir V, Rugo HS (2005) Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 23(4):792–799. doi: 10.1200/JCO.2005.05.098 PubMedCrossRefGoogle Scholar
  65. 65.
    de Gramont A, Van Cutsem E, Schmoll HJ, Tabernero J, Clarke S, Moore MJ, Cunningham D, Cartwright TH, Hecht JR, Rivera F, Im SA, Bodoky G, Salazar R, Maindrault-Goebel F, Shacham-Shmueli E, Bajetta E, Makrutzki M, Shang A, Andre T, Hoff PM (2012) Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial. Lancet Oncol 13(12):1225–1233. doi: 10.1016/S1470-2045(12)70509-0 PubMedCrossRefGoogle Scholar
  66. 66.
    Aghajanian C, Blank SV, Goff BA, Judson PL, Teneriello MG, Husain A, Sovak MA, Yi J, Nycum LR (2012) OCEANS: a randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer. J Clin Oncol 30(17):2039–2045. doi: 10.1200/JCO.2012.42.0505 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Burger RA, Brady MF, Bookman MA, Fleming GF, Monk BJ, Huang H, Mannel RS, Homesley HD, Fowler J, Greer BE, Boente M, Birrer MJ, Liang SX, Gynecologic Oncology G (2011) Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med 365(26):2473–2483. doi: 10.1056/NEJMoa1104390 PubMedCrossRefGoogle Scholar
  68. 68.
    Giantonio BJ, Catalano PJ, Meropol NJ, O’Dwyer PJ, Mitchell EP, Alberts SR, Schwartz MA, Benson AB, 3rd, Eastern Cooperative Oncology Group Study E (2007) Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J Clin Oncol 25(12):1539–1544. doi: 10.1200/JCO.2006.09.6305 PubMedCrossRefGoogle Scholar
  69. 69.
    Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342. doi: 10.1056/NEJMoa032691 PubMedCrossRefGoogle Scholar
  70. 70.
    Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G, Carey MS, Beale P, Cervantes A, Kurzeder C, du Bois A, Sehouli J, Kimmig R, Stahle A, Collinson F, Essapen S, Gourley C, Lortholary A, Selle F, Mirza MR, Leminen A, Plante M, Stark D, Qian W, Parmar MK, Oza AM, Investigators I (2011) A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med 365(26):2484–2496. doi: 10.1056/NEJMoa1103799 PubMedCrossRefGoogle Scholar
  71. 71.
    Pujade-Lauraine E, Hilpert F, Weber B, Reuss A, Poveda A, Kristensen G, Sorio R, Vergote I, Witteveen P, Bamias A, Pereira D, Wimberger P, Oaknin A, Mirza MR, Follana P, Bollag D, Ray-Coquard I (2014) Bevacizumab combined with chemotherapy for platinum-resistant recurrent ovarian cancer: the AURELIA open-label randomized phase III trial. J Clin Oncol 32(13):1302–1308. doi: 10.1200/JCO.2013.51.4489 PubMedCrossRefGoogle Scholar
  72. 72.
    Saltz LB, Clarke S, Diaz-Rubio E, Scheithauer W, Figer A, Wong R, Koski S, Lichinitser M, Yang TS, Rivera F, Couture F, Sirzen F, Cassidy J (2008) Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 26(12):2013–2019. doi: 10.1200/JCO.2007.14.9930 PubMedCrossRefGoogle Scholar
  73. 73.
    Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R, Johnson DH (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355(24):2542–2550. doi: 10.1056/NEJMoa061884 PubMedCrossRefGoogle Scholar
  74. 74.
    Tewari KS, Sill MW, Long HJ 3rd, Penson RT, Huang H, Ramondetta LM, Landrum LM, Oaknin A, Reid TJ, Leitao MM, Michael HE, Monk BJ (2014) Improved survival with bevacizumab in advanced cervical cancer. N Engl J Med 370(8):734–743. doi: 10.1056/NEJMoa1309748 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Zalcman G, Mazieres J, Margery J, Greillier L, Audigier-Valette C, Moro-Sibilot D, Molinier O, Corre R, Monnet I, Gounant V, Riviere F, Janicot H, Gervais R, Locher C, Milleron B, Tran Q, Lebitasy MP, Morin F, Creveuil C, Parienti JJ, Scherpereel A, French Cooperative Thoracic I (2016) Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): a randomised, controlled, open-label, phase 3 trial. Lancet 387(10026):1405–1414. doi: 10.1016/S0140-6736(15)01238-6 PubMedCrossRefGoogle Scholar
  76. 76.
    Rini BI, Bellmunt J, Clancy J, Wang K, Niethammer AG, Hariharan S, Escudier B (2014) Randomized phase III trial of temsirolimus and bevacizumab versus interferon alfa and bevacizumab in metastatic renal cell carcinoma: INTORACT trial. J Clin Oncol 32(8):752–759. doi: 10.1200/JCO.2013.50.5305 PubMedCrossRefGoogle Scholar
  77. 77.
    Corrie PG, Marshall A, Dunn JA, Middleton MR, Nathan PD, Gore M, Davidson N, Nicholson S, Kelly CG, Marples M, Danson SJ, Marshall E, Houston SJ, Board RE, Waterston AM, Nobes JP, Harries M, Kumar S, Young G, Lorigan P (2014) Adjuvant bevacizumab in patients with melanoma at high risk of recurrence (AVAST-M): preplanned interim results from a multicentre, open-label, randomised controlled phase 3 study. Lancet Oncol 15(6):620–630. doi: 10.1016/S1470-2045(14)70110-X PubMedCrossRefGoogle Scholar
  78. 78.
    Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8(4):299–309. doi: 10.1016/j.ccr.2005.09.005 PubMedCrossRefGoogle Scholar
  79. 79.
    Jayson GC, Kerbel R, Ellis LM, Harris AL (2016) Antiangiogenic therapy in oncology: current status and future directions. Lancet 388(10043):518–529. doi: 10.1016/S0140-6736(15)01088-0 PubMedCrossRefGoogle Scholar
  80. 80.
    Van Cutsem E, Tabernero J, Lakomy R, Prenen H, Prausova J, Macarulla T, Ruff P, van Hazel GA, Moiseyenko V, Ferry D, McKendrick J, Polikoff J, Tellier A, Castan R, Allegra C (2012) Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol 30(28):3499–3506. doi: 10.1200/JCO.2012.42.8201 PubMedCrossRefGoogle Scholar
  81. 81.
    Rini BI, Escudier B, Tomczak P, Kaprin A, Szczylik C, Hutson TE, Michaelson MD, Gorbunova VA, Gore ME, Rusakov IG, Negrier S, Ou YC, Castellano D, Lim HY, Uemura H, Tarazi J, Cella D, Chen C, Rosbrook B, Kim S, Motzer RJ (2011) Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet 378(9807):1931–1939. doi: 10.1016/S0140-6736(11)61613-9 PubMedCrossRefGoogle Scholar
  82. 82.
    Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, Luo R, Feng J, Ye S, Yang TS, Xu J, Sun Y, Liang H, Liu J, Wang J, Tak WY, Pan H, Burock K, Zou J, Voliotis D, Guan Z (2009) Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10(1):25–34. doi: 10.1016/S1470-2045(08)70285-7 PubMedCrossRefGoogle Scholar
  83. 83.
    Brose MS, Nutting CM, Jarzab B, Elisei R, Siena S, Bastholt L, de la Fouchardiere C, Pacini F, Paschke R, Shong YK, Sherman SI, Smit JW, Chung J, Kappeler C, Pena C, Molnar I, Schlumberger MJ, investigators D (2014) Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 384(9940):319–328. doi: 10.1016/S0140-6736(14)60421-9 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Demetri GD, Reichardt P, Kang YK, Blay JY, Rutkowski P, Gelderblom H, Hohenberger P, Leahy M, von Mehren M, Joensuu H, Badalamenti G, Blackstein M, Le Cesne A, Schoffski P, Maki RG, Bauer S, Nguyen BB, Xu J, Nishida T, Chung J, Kappeler C, Kuss I, Laurent D, Casali PG, investigators Gs (2013) Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381(9863):295–302. doi: 10.1016/S0140-6736(12)61857-1 PubMedCrossRefGoogle Scholar
  85. 85.
    George S, Wang Q, Heinrich MC, Corless CL, Zhu M, Butrynski JE, Morgan JA, Wagner AJ, Choy E, Tap WD, Yap JT, Van den Abbeele AD, Manola JB, Solomon SM, Fletcher JA, von Mehren M, Demetri GD (2012) Efficacy and safety of regorafenib in patients with metastatic and/or unresectable GI stromal tumor after failure of imatinib and sunitinib: a multicenter phase II trial. J Clin Oncol 30(19):2401–2407. doi: 10.1200/JCO.2011.39.9394 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Bruix J, Qin S, Merle P, Granito A, Huang YH, Bodoky G, Pracht M, Yokosuka O, Rosmorduc O, Breder V, Gerolami R, Masi G, Ross PJ, Song T, Bronowicki JP, Ollivier-Hourmand I, Kudo M, Cheng AL, Llovet JM, Finn RS, LeBerre MA, Baumhauer A, Meinhardt G, Han G, Investigators R (2017) Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 389(10064):56–66. doi: 10.1016/S0140-6736(16)32453-9 PubMedCrossRefGoogle Scholar
  87. 87.
    Grothey A, Van Cutsem E, Sobrero A, Siena S, Falcone A, Ychou M, Humblet Y, Bouche O, Mineur L, Barone C, Adenis A, Tabernero J, Yoshino T, Lenz HJ, Goldberg RM, Sargent DJ, Cihon F, Cupit L, Wagner A, Laurent D, Group CS (2013) Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381(9863):303–312. doi: 10.1016/S0140-6736(12)61900-X PubMedCrossRefGoogle Scholar
  88. 88.
    Wells SA Jr, Robinson BG, Gagel RF, Dralle H, Fagin JA, Santoro M, Baudin E, Elisei R, Jarzab B, Vasselli JR, Read J, Langmuir P, Ryan AJ, Schlumberger MJ (2012) Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol 30(2):134–141. doi: 10.1200/JCO.2011.35.5040 PubMedCrossRefGoogle Scholar
  89. 89.
    Bible KC, Suman VJ, Molina JR, Smallridge RC, Maples WJ, Menefee ME, Rubin J, Sideras K, Morris JC 3rd, McIver B, Burton JK, Webster KP, Bieber C, Traynor AM, Flynn PJ, Goh BC, Tang H, Ivy SP, Erlichman C, Endocrine Malignancies Disease Oriented G, Mayo Clinic Cancer C, Mayo Phase C (2010) Efficacy of pazopanib in progressive, radioiodine-refractory, metastatic differentiated thyroid cancers: results of a phase 2 consortium study. Lancet Oncol 11(10):962–972. doi: 10.1016/S1470-2045(10)70203-5 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Motzer RJ, Hutson TE, McCann L, Deen K, Choueiri TK (2014) Overall survival in renal-cell carcinoma with pazopanib versus sunitinib. N Engl J Med 370(18):1769–1770. doi: 10.1056/NEJMc1400731 PubMedCrossRefGoogle Scholar
  91. 91.
    Motzer RJ, Hutson TE, Glen H, Michaelson MD, Molina A, Eisen T, Jassem J, Zolnierek J, Maroto JP, Mellado B, Melichar B, Tomasek J, Kremer A, Kim HJ, Wood K, Dutcus C, Larkin J (2015) Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol 16(15):1473–1482. doi: 10.1016/S1470-2045(15)00290-9 PubMedCrossRefGoogle Scholar
  92. 92.
    Choueiri TK, Escudier B, Powles T, Mainwaring PN, Rini BI, Donskov F, Hammers H, Hutson TE, Lee JL, Peltola K, Roth BJ, Bjarnason GA, Geczi L, Keam B, Maroto P, Heng DY, Schmidinger M, Kantoff PW, Borgman-Hagey A, Hessel C, Scheffold C, Schwab GM, Tannir NM, Motzer RJ, Investigators M (2015) Cabozantinib versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373(19):1814–1823. doi: 10.1056/NEJMoa1510016 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Elisei R, Schlumberger MJ, Muller SP, Schoffski P, Brose MS, Shah MH, Licitra L, Jarzab B, Medvedev V, Kreissl MC, Niederle B, Cohen EE, Wirth LJ, Ali H, Hessel C, Yaron Y, Ball D, Nelkin B, Sherman SI (2013) Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol 31(29):3639–3646. doi: 10.1200/JCO.2012.48.4659 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Kurzrock R, Sherman SI, Ball DW, Forastiere AA, Cohen RB, Mehra R, Pfister DG, Cohen EE, Janisch L, Nauling F, Hong DS, Ng CS, Ye L, Gagel RF, Frye J, Muller T, Ratain MJ, Salgia R (2011) Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol 29(19):2660–2666. doi: 10.1200/JCO.2010.32.4145 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, Safran H, dos Santos LV, Aprile G, Ferry DR, Melichar B, Tehfe M, Topuzov E, Zalcberg JR, Chau I, Campbell W, Sivanandan C, Pikiel J, Koshiji M, Hsu Y, Liepa AM, Gao L, Schwartz JD, Tabernero J, Investigators RT (2014) Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 383(9911):31–39. doi: 10.1016/S0140-6736(13)61719-5 PubMedCrossRefGoogle Scholar
  96. 96.
    Garon EB, Ciuleanu TE, Arrieta O, Prabhash K, Syrigos KN, Goksel T, Park K, Gorbunova V, Kowalyszyn RD, Pikiel J, Czyzewicz G, Orlov SV, Lewanski CR, Thomas M, Bidoli P, Dakhil S, Gans S, Kim JH, Grigorescu A, Karaseva N, Reck M, Cappuzzo F, Alexandris E, Sashegyi A, Yurasov S, Perol M (2014) Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): a multicentre, double-blind, randomised phase 3 trial. Lancet 384(9944):665–673. doi: 10.1016/S0140-6736(14)60845-X PubMedCrossRefGoogle Scholar
  97. 97.
    Wilke H, Muro K, Van Cutsem E, Oh SC, Bodoky G, Shimada Y, Hironaka S, Sugimoto N, Lipatov O, Kim TY, Cunningham D, Rougier P, Komatsu Y, Ajani J, Emig M, Carlesi R, Ferry D, Chandrawansa K, Schwartz JD, Ohtsu A, Group RS (2014) Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol 15(11):1224–1235. doi: 10.1016/S1470-2045(14)70420-6 PubMedCrossRefGoogle Scholar
  98. 98.
    Ledermann JA, Embleton AC, Raja F, Perren TJ, Jayson GC, Rustin GJ, Kaye SB, Hirte H, Eisenhauer E, Vaughan M, Friedlander M, Gonzalez-Martin A, Stark D, Clark E, Farrelly L, Swart AM, Cook A, Kaplan RS, Parmar MK, collaborators I (2016) Cediranib in patients with relapsed platinum-sensitive ovarian cancer (ICON6): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 387(10023):1066–1074. doi: 10.1016/S0140-6736(15)01167-8 PubMedCrossRefGoogle Scholar
  99. 99.
    Schmoll HJ, Cunningham D, Sobrero A, Karapetis CS, Rougier P, Koski SL, Kocakova I, Bondarenko I, Bodoky G, Mainwaring P, Salazar R, Barker P, Mookerjee B, Robertson J, Van Cutsem E (2012) Cediranib with mFOLFOX6 versus bevacizumab with mFOLFOX6 as first-line treatment for patients with advanced colorectal cancer: a double-blind, randomized phase III study (HORIZON III). J Clin Oncol 30(29):3588–3595. doi: 10.1200/JCO.2012.42.5355 PubMedCrossRefGoogle Scholar
  100. 100.
    Schmidt C (2015) Cediranib aims for a comeback. J Natl Cancer Inst. doi: 10.1093/jnci/djv068 Google Scholar
  101. 101.
    Vasudev NS, Reynolds AR (2014) Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis 17(3):471–494. doi: 10.1007/s10456-014-9420-y PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Mas-Moruno C, Rechenmacher F, Kessler H (2010) Cilengitide: the first anti-angiogenic small molecule drug candidate design, synthesis and clinical evaluation. Anticancer Agents Med Chem 10(10):753–768PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Oliveira-Ferrer L, Hauschild J, Fiedler W, Bokemeyer C, Nippgen J, Celik I, Schuch G (2008) Cilengitide induces cellular detachment and apoptosis in endothelial and glioma cells mediated by inhibition of FAK/src/AKT pathway. J Exp Clin Cancer Res 27:86. doi: 10.1186/1756-9966-27-86 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Stupp R, Hegi ME, Gorlia T, Erridge SC, Perry J, Hong YK, Aldape KD, Lhermitte B, Pietsch T, Grujicic D, Steinbach JP, Wick W, Tarnawski R, Nam DH, Hau P, Weyerbrock A, Taphoorn MJ, Shen CC, Rao N, Thurzo L, Herrlinger U, Gupta T, Kortmann RD, Adamska K, McBain C, Brandes AA, Tonn JC, Schnell O, Wiegel T, Kim CY, Nabors LB, Reardon DA, van den Bent MJ, Hicking C, Markivskyy A, Picard M, Weller M, European Organisation for R, Treatment of C, Canadian Brain Tumor C, team Cs (2014) Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 15(10):1100–1108. doi: 10.1016/S1470-2045(14)70379-1 PubMedCrossRefGoogle Scholar
  105. 105.
    Neal J, Wakelee H (2010) AMG-386, a selective angiopoietin-1/-2-neutralizing peptibody for the potential treatment of cancer. Curr Opin Mol Ther 12(4):487–495PubMedGoogle Scholar
  106. 106.
    Coxon A, Bready J, Min H, Kaufman S, Leal J, Yu D, Lee TA, Sun JR, Estrada J, Bolon B, McCabe J, Wang L, Rex K, Caenepeel S, Hughes P, Cordover D, Kim H, Han SJ, Michaels ML, Hsu E, Shimamoto G, Cattley R, Hurh E, Nguyen L, Wang SX, Ndifor A, Hayward IJ, Falcon BL, McDonald DM, Li L, Boone T, Kendall R, Radinsky R, Oliner JD (2010) Context-dependent role of angiopoietin-1 inhibition in the suppression of angiogenesis and tumor growth: implications for AMG 386, an angiopoietin-1/2-neutralizing peptibody. Mol Cancer Ther 9(10):2641–2651. doi: 10.1158/1535-7163.MCT-10-0213 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Monk BJ, Poveda A, Vergote I, Raspagliesi F, Fujiwara K, Bae DS, Oaknin A, Ray-Coquard I, Provencher DM, Karlan BY, Lhomme C, Richardson G, Rincon DG, Coleman RL, Herzog TJ, Marth C, Brize A, Fabbro M, Redondo A, Bamias A, Tassoudji M, Navale L, Warner DJ, Oza AM (2014) Anti-angiopoietin therapy with trebananib for recurrent ovarian cancer (TRINOVA-1): a randomised, multicentre, double-blind, placebo-controlled phase 3 trial. Lancet Oncol 15(8):799–808. doi: 10.1016/S1470-2045(14)70244-X PubMedCrossRefGoogle Scholar
  108. 108.
    Motzer RJ, Porta C, Vogelzang NJ, Sternberg CN, Szczylik C, Zolnierek J, Kollmannsberger C, Rha SY, Bjarnason GA, Melichar B, De Giorgi U, Grunwald V, Davis ID, Lee JL, Esteban E, Urbanowitz G, Cai C, Squires M, Marker M, Shi MM, Escudier B (2014) Dovitinib versus sorafenib for third-line targeted treatment of patients with metastatic renal cell carcinoma: an open-label, randomised phase 3 trial. Lancet Oncol 15(3):286–296. doi: 10.1016/S1470-2045(14)70030-0 PubMedCrossRefGoogle Scholar
  109. 109.
    Sivanand S, Pena-Llopis S, Zhao H, Kucejova B, Spence P, Pavia-Jimenez A, Yamasaki T, McBride DJ, Gillen J, Wolff NC, Morlock L, Lotan Y, Raj GV, Sagalowsky A, Margulis V, Cadeddu JA, Ross MT, Bentley DR, Kabbani W, Xie XJ, Kapur P, Williams NS, Brugarolas J (2012) A validated tumorgraft model reveals activity of dovitinib against renal cell carcinoma. Sci Transl Med 4(137):137ra175. doi: 10.1126/scitranslmed.3003643 CrossRefGoogle Scholar
  110. 110.
    Huynh H, Ngo VC, Fargnoli J, Ayers M, Soo KC, Koong HN, Thng CH, Ong HS, Chung A, Chow P, Pollock P, Byron S, Tran E (2008) Brivanib alaninate, a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor tyrosine kinases, induces growth inhibition in mouse models of human hepatocellular carcinoma. Clin Cancer Res 14(19):6146–6153. doi: 10.1158/1078-0432.CCR-08-0509 PubMedCrossRefGoogle Scholar
  111. 111.
    Johnson PJ, Qin S, Park JW, Poon RT, Raoul JL, Philip PA, Hsu CH, Hu TH, Heo J, Xu J, Lu L, Chao Y, Boucher E, Han KH, Paik SW, Robles-Avina J, Kudo M, Yan L, Sobhonslidsuk A, Komov D, Decaens T, Tak WY, Jeng LB, Liu D, Ezzeddine R, Walters I, Cheng AL (2013) Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: results from the randomized phase III BRISK-FL study. J Clin Oncol 31(28):3517–3524. doi: 10.1200/JCO.2012.48.4410 PubMedCrossRefGoogle Scholar
  112. 112.
    Kudo M, Han G, Finn RS, Poon RT, Blanc JF, Yan L, Yang J, Lu L, Tak WY, Yu X, Lee JH, Lin SM, Wu C, Tanwandee T, Shao G, Walters IB, Dela Cruz C, Poulart V, Wang JH (2014) Brivanib as adjuvant therapy to transarterial chemoembolization in patients with hepatocellular carcinoma: a randomized phase III trial. Hepatology 60(5):1697–1707. doi: 10.1002/hep.27290 PubMedCrossRefGoogle Scholar
  113. 113.
    Llovet JM, Decaens T, Raoul JL, Boucher E, Kudo M, Chang C, Kang YK, Assenat E, Lim HY, Boige V, Mathurin P, Fartoux L, Lin DY, Bruix J, Poon RT, Sherman M, Blanc JF, Finn RS, Tak WY, Chao Y, Ezzeddine R, Liu D, Walters I, Park JW (2013) Brivanib in patients with advanced hepatocellular carcinoma who were intolerant to sorafenib or for whom sorafenib failed: results from the randomized phase III BRISK-PS study. J Clin Oncol 31(28):3509–3516. doi: 10.1200/JCO.2012.47.3009 PubMedCrossRefGoogle Scholar
  114. 114.
    van Beijnum JR, Nowak-Sliwinska P, Huijbers EJ, Thijssen VL, Griffioen AW (2015) The great escape; the hallmarks of resistance to antiangiogenic therapy. Pharmacol Rev 67(2):441–461. doi: 10.1124/pr.114.010215 PubMedCrossRefGoogle Scholar
  115. 115.
    Gotink KJ, Broxterman HJ, Labots M, de Haas RR, Dekker H, Honeywell RJ, Rudek MA, Beerepoot LV, Musters RJ, Jansen G, Griffioen AW, Assaraf YG, Pili R, Peters GJ, Verheul HM (2011) Lysosomal sequestration of sunitinib: a novel mechanism of drug resistance. Clin Cancer Res 17(23):7337–7346. doi: 10.1158/1078-0432.CCR-11-1667 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Xu L, Duda DG, di Tomaso E, Ancukiewicz M, Chung DC, Lauwers GY, Samuel R, Shellito P, Czito BG, Lin PC, Poleski M, Bentley R, Clark JW, Willett CG, Jain RK (2009) Direct evidence that bevacizumab, an anti-VEGF antibody, up-regulates SDF1alpha, CXCR4, CXCL6, and neuropilin 1 in tumors from patients with rectal cancer. Cancer Res 69(20):7905–7910. doi: 10.1158/0008-5472.CAN-09-2099 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Clarke JM, Hurwitz HI (2013) Understanding and targeting resistance to anti-angiogenic therapies. J Gastrointest Oncol 4(3):253–263. doi: 10.3978/j.issn.2078-6891.2013.036 PubMedPubMedCentralGoogle Scholar
  118. 118.
    Mahon PC, Hirota K, Semenza GL (2001) FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15(20):2675–2686. doi: 10.1101/gad.924501 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Tang N, Wang L, Esko J, Giordano FJ, Huang Y, Gerber HP, Ferrara N, Johnson RS (2004) Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 6(5):485–495. doi: 10.1016/j.ccr.2004.09.026 PubMedCrossRefGoogle Scholar
  120. 120.
    Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 59(22):5830–5835PubMedGoogle Scholar
  121. 121.
    Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y, Matrisian LM, Carbone DP, Lin PC (2004) Expansion of myeloid immune suppressor Gr+ CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6(4):409–421. doi: 10.1016/j.ccr.2004.08.031 PubMedCrossRefGoogle Scholar
  122. 122.
    Huijbers EJ, van Beijnum JR, Thijssen VL, Sabrkhany S, Nowak-Sliwinska P, Griffioen AW (2016) Role of the tumor stroma in resistance to anti-angiogenic therapy. Drug Resist Updat 25:26–37. doi: 10.1016/j.drup.2016.02.002 PubMedCrossRefGoogle Scholar
  123. 123.
    Hiratsuka S, Duda DG, Huang Y, Goel S, Sugiyama T, Nagasawa T, Fukumura D, Jain RK (2011) C-X-C receptor type 4 promotes metastasis by activating p38 mitogen-activated protein kinase in myeloid differentiation antigen (Gr-1)-positive cells. Proc Natl Acad Sci USA 108(1):302–307. doi: 10.1073/pnas.1016917108 PubMedCrossRefGoogle Scholar
  124. 124.
    Chen Y, Ramjiawan RR, Reiberger T, Ng MR, Hato T, Huang Y, Ochiai H, Kitahara S, Unan EC, Reddy TP, Fan C, Huang P, Bardeesy N, Zhu AX, Jain RK, Duda DG (2015) CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology 61(5):1591–1602. doi: 10.1002/hep.27665 PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Loges S, Schmidt T, Carmeliet P (2010) Mechanisms of resistance to anti-angiogenic therapy and development of third-generation anti-angiogenic drug candidates. Genes Cancer 1(1):12–25. doi: 10.1177/1947601909356574 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8(8):592–603. doi: 10.1038/nrc2442 PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Reiberger T, Chen Y, Ramjiawan RR, Hato T, Fan C, Samuel R, Roberge S, Huang P, Lauwers GY, Zhu AX, Bardeesy N, Jain RK, Duda DG (2015) An orthotopic mouse model of hepatocellular carcinoma with underlying liver cirrhosis. Nat Protoc 10(8):1264–1274. doi: 10.1038/nprot.2015.080 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Dirkx AE, Oude Egbrink MG, Wagstaff J, Griffioen AW (2006) Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol 80(6):1183–1196. doi: 10.1189/jlb.0905495 PubMedCrossRefGoogle Scholar
  129. 129.
    Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284(5422):1994–1998PubMedCrossRefGoogle Scholar
  130. 130.
    Rubenstein JL, Kim J, Ozawa T, Zhang M, Westphal M, Deen DF, Shuman MA (2000) Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2(4):306–314PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Kuczynski EA, Yin M, Bar-Zion A, Lee CR, Butz H, Man S, Daley F, Vermeulen PB, Yousef GM, Foster FS, Reynolds AR, Kerbel RS (2016) Co-option of liver vessels and not sprouting angiogenesis drives acquired sorafenib resistance in hepatocellular carcinoma. J Natl Cancer Inst. doi: 10.1093/jnci/djw030 PubMedPubMedCentralGoogle Scholar
  132. 132.
    Frentzas S, Simoneau E, Bridgeman VL, Vermeulen PB, Foo S, Kostaras E, Nathan MR, Wotherspoon A, Gao ZH, Shi Y, Van den Eynden G, Daley F, Peckitt C, Tan X, Salman A, Lazaris A, Gazinska P, Berg TJ, Eltahir Z, Ritsma L, van Rheenen J, Khashper A, Brown G, Nystrom H, Sund M, Van Laere S, Loyer E, Dirix L, Cunningham D, Metrakos P, Reynolds AR (2016) Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat Med 22(11):1294–1302. doi: 10.1038/nm.4197 PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Jeong HS, Jones D, Liao S, Wattson DA, Cui CH, Duda DG, Willett CG, Jain RK, Padera TP (2015) Investigation of the lack of angiogenesis in the formation of lymph node metastases. J Natl Cancer Inst. doi: 10.1093/jnci/djv155 Google Scholar
  134. 134.
    Sun B, Zhang D, Zhang S, Zhang W, Guo H, Zhao X (2007) Hypoxia influences vasculogenic mimicry channel formation and tumor invasion-related protein expression in melanoma. Cancer Lett 249(2):188–197. doi: 10.1016/j.canlet.2006.08.016 PubMedCrossRefGoogle Scholar
  135. 135.
    Sun B, Zhang S, Zhang D, Du J, Guo H, Zhao X, Zhang W, Hao X (2006) Vasculogenic mimicry is associated with high tumor grade, invasion and metastasis, and short survival in patients with hepatocellular carcinoma. Oncol Rep 16(4):693–698PubMedGoogle Scholar
  136. 136.
    Chen Y, Jing Z, Luo C, Zhuang M, Xia J, Chen Z, Wang Y (2012) Vasculogenic mimicry-potential target for glioblastoma therapy: an in vitro and in vivo study. Med Oncol 29(1):324–331. doi: 10.1007/s12032-010-9765-z PubMedCrossRefGoogle Scholar
  137. 137.
    van der Schaft DW, Hillen F, Pauwels P, Kirschmann DA, Castermans K, Egbrink MG, Tran MG, Sciot R, Hauben E, Hogendoorn PC, Delattre O, Maxwell PH, Hendrix MJ, Griffioen AW (2005) Tumor cell plasticity in Ewing sarcoma, an alternative circulatory system stimulated by hypoxia. Cancer Res 65(24):11520–11528. doi: 10.1158/0008-5472.CAN-05-2468 PubMedCrossRefGoogle Scholar
  138. 138.
    van der Schaft DW, Seftor RE, Seftor EA, Hess AR, Gruman LM, Kirschmann DA, Yokoyama Y, Griffioen AW, Hendrix MJ (2004) Effects of angiogenesis inhibitors on vascular network formation by human endothelial and melanoma cells. J Natl Cancer Inst 96(19):1473–1477. doi: 10.1093/jnci/djh267 PubMedCrossRefGoogle Scholar
  139. 139.
    Patan S, Munn LL, Jain RK (1996) Intussusceptive microvascular growth in a human colon adenocarcinoma xenograft: a novel mechanism of tumor angiogenesis. Microvasc Res 51(2):260–272. doi: 10.1006/mvre.1996.0025 PubMedCrossRefGoogle Scholar
  140. 140.
    Djonov VG, Kurz H, Burri PH (2002) Optimality in the developing vascular system: branching remodeling by means of intussusception as an efficient adaptation mechanism. Dev Dyn 224(4):391–402. doi: 10.1002/dvdy.10119 PubMedCrossRefGoogle Scholar
  141. 141.
    Hlushchuk R, Riesterer O, Baum O, Wood J, Gruber G, Pruschy M, Djonov V (2008) Tumor recovery by angiogenic switch from sprouting to intussusceptive angiogenesis after treatment with PTK787/ZK222584 or ionizing radiation. Am J Pathol 173(4):1173–1185. doi: 10.2353/ajpath.2008.071131 PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM (2010) Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J Clin Invest 120(3):694–705. doi: 10.1172/JCI40283 PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Jain RK, Duda DG (2003) Role of bone marrow-derived cells in tumor angiogenesis and treatment. Cancer Cell 3(6):515–516PubMedCrossRefGoogle Scholar
  144. 144.
    Kodack DP, Chung E, Yamashita H, Incio J, Duyverman AM, Song Y, Farrar CT, Huang Y, Ager E, Kamoun W, Goel S, Snuderl M, Lussiez A, Hiddingh L, Mahmood S, Tannous BA, Eichler AF, Fukumura D, Engelman JA, Jain RK (2012) Combined targeting of HER2 and VEGFR2 for effective treatment of HER2-amplified breast cancer brain metastases. Proc Natl Acad Sci USA 109(45):E3119–E3127. doi: 10.1073/pnas.1216078109 PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Erber R, Thurnher A, Katsen AD, Groth G, Kerger H, Hammes HP, Menger MD, Ullrich A, Vajkoczy P (2004) Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J 18(2):338–340. doi: 10.1096/fj.03-0271fje PubMedGoogle Scholar
  146. 146.
    Motz GT, Coukos G (2011) The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat Rev Immunol 11(10):702–711. doi: 10.1038/nri3064 PubMedCrossRefGoogle Scholar
  147. 147.
    Liu XD, Hoang A, Zhou L, Kalra S, Yetil A, Sun M, Ding Z, Zhang X, Bai S, German P, Tamboli P, Rao P, Karam JA, Wood C, Matin S, Zurita A, Bex A, Griffioen AW, Gao J, Sharma P, Tannir N, Sircar K, Jonasch E (2015) Resistance to antiangiogenic therapy is associated with an immunosuppressive tumor microenvironment in metastatic renal cell carcinoma. Cancer Immunol Res 3(9):1017–1029. doi: 10.1158/2326-6066.CIR-14-0244 PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Batchelor TT, Gerstner ER, Emblem KE, Duda DG, Kalpathy-Cramer J, Snuderl M, Ancukiewicz M, Polaskova P, Pinho MC, Jennings D, Plotkin SR, Chi AS, Eichler AF, Dietrich J, Hochberg FH, Lu-Emerson C, Iafrate AJ, Ivy SP, Rosen BR, Loeffler JS, Wen PY, Sorensen AG, Jain RK (2013) Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation. Proc Natl Acad Sci USA 110(47):19059–19064. doi: 10.1073/pnas.1318022110 PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Dings RP, Vang KB, Castermans K, Popescu F, Zhang Y, Oude Egbrink MG, Mescher MF, Farrar MA, Griffioen AW, Mayo KH (2011) Enhancement of T-cell-mediated antitumor response: angiostatic adjuvant to immunotherapy against cancer. Clin Cancer Res 17(10):3134–3145. doi: 10.1158/1078-0432.CCR-10-2443 PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Meng MB, Zaorsky NG, Deng L, Wang HH, Chao J, Zhao LJ, Yuan ZY, Ping W (2015) Pericytes: a double-edged sword in cancer therapy. Future Oncol 11(1):169–179. doi: 10.2217/fon.14.123 PubMedCrossRefGoogle Scholar
  151. 151.
    Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, Xu L, Hicklin DJ, Fukumura D, di Tomaso E, Munn LL, Jain RK (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6(6):553–563. doi: 10.1016/j.ccr.2004.10.011 PubMedGoogle Scholar
  152. 152.
    Huang Y, Yuan J, Righi E, Kamoun WS, Ancukiewicz M, Nezivar J, Santosuosso M, Martin JD, Martin MR, Vianello F, Leblanc P, Munn LL, Huang P, Duda DG, Fukumura D, Jain RK, Poznansky MC (2012) Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc Natl Acad Sci USA 109(43):17561–17566. doi: 10.1073/pnas.1215397109 PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Pacholczyk R, Kern J (2008) The T-cell receptor repertoire of regulatory T cells. Immunology 125(4):450–458. doi: 10.1111/j.1365-2567.2008.02992.x PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, Sharpe AH (2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 206(13):3015–3029. doi: 10.1084/jem.20090847 PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, Barlesi F, Kohlhaufl M, Arrieta O, Burgio MA, Fayette J, Lena H, Poddubskaya E, Gerber DE, Gettinger SN, Rudin CM, Rizvi N, Crino L, Blumenschein GR Jr, Antonia SJ, Dorange C, Harbison CT, Graf Finckenstein F, Brahmer JR (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373(17):1627–1639. doi: 10.1056/NEJMoa1507643 PubMedCrossRefGoogle Scholar
  156. 156.
    Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE, Holgado E, Waterhouse D, Ready N, Gainor J, Aren Frontera O, Havel L, Steins M, Garassino MC, Aerts JG, Domine M, Paz-Ares L, Reck M, Baudelet C, Harbison CT, Lestini B, Spigel DR (2015) Nivolumab versus Docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373(2):123–135. doi: 10.1056/NEJMoa1504627 PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, Castellano D, Choueiri TK, Gurney H, Donskov F, Bono P, Wagstaff J, Gauler TC, Ueda T, Tomita Y, Schutz FA, Kollmannsberger C, Larkin J, Ravaud A, Simon JS, Xu LA, Waxman IM, Sharma P, CheckMate I (2015) Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med 373(19):1803–1813. doi: 10.1056/NEJMoa1510665 PubMedCrossRefGoogle Scholar
  158. 158.
    Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, Savage KJ, Hernberg MM, Lebbe C, Charles J, Mihalcioiu C, Chiarion-Sileni V, Mauch C, Cognetti F, Arance A, Schmidt H, Schadendorf D, Gogas H, Lundgren-Eriksson L, Horak C, Sharkey B, Waxman IM, Atkinson V, Ascierto PA (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372(4):320–330. doi: 10.1056/NEJMoa1412082 PubMedCrossRefGoogle Scholar
  159. 159.
    Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE, Even C, Worden F, Saba NF, Iglesias Docampo LC, Haddad R, Rordorf T, Kiyota N, Tahara M, Monga M, Lynch M, Geese WJ, Kopit J, Shaw JW, Gillison ML (2016) Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375(19):1856–1867. doi: 10.1056/NEJMoa1602252 PubMedCrossRefGoogle Scholar
  160. 160.
    Sharma P, Retz M, Siefker-Radtke A, Baron A, Necchi A, Bedke J, Plimack ER, Vaena D, Grimm MO, Bracarda S, Arranz JA, Pal S, Ohyama C, Saci A, Qu X, Lambert A, Krishnan S, Azrilevich A, Galsky MD (2017) Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. doi: 10.1016/S1470-2045(17)30065-7 Google Scholar
  161. 161.
    Yuan J, Gnjatic S, Li H, Powel S, Gallardo HF, Ritter E, Ku GY, Jungbluth AA, Segal NH, Rasalan TS, Manukian G, Xu Y, Roman RA, Terzulli SL, Heywood M, Pogoriler E, Ritter G, Old LJ, Allison JP, Wolchok JD (2008) CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc Natl Acad Sci USA 105(51):20410–20415. doi: 10.1073/pnas.0810114105 PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Anassi E, Ndefo UA (2011) Sipuleucel-T (provenge) injection: the first immunotherapy agent (vaccine) for hormone-refractory prostate cancer. Pharm Ther 36(4):197–202Google Scholar
  163. 163.
    Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, Dawson N, O’Donnell PH, Balmanoukian A, Loriot Y, Srinivas S, Retz MM, Grivas P, Joseph RW, Galsky MD, Fleming MT, Petrylak DP, Perez-Gracia JL, Burris HA, Castellano D, Canil C, Bellmunt J, Bajorin D, Nickles D, Bourgon R, Frampton GM, Cui N, Mariathasan S, Abidoye O, Fine GD, Dreicer R (2016) Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387(10031):1909–1920. doi: 10.1016/S0140-6736(16)00561-4 PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Francisco LM, Sage PT, Sharpe AH (2010) The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 236:219–242. doi: 10.1111/j.1600-065X.2010.00923.x PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Chen J, Jiang CC, Jin L, Zhang XD (2016) Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol 27(3):409–416. doi: 10.1093/annonc/mdv615 PubMedCrossRefGoogle Scholar
  166. 166.
    Teng MW, Ngiow SF, Ribas A, Smyth MJ (2015) Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res 75(11):2139–2145. doi: 10.1158/0008-5472.CAN-15-0255 PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Dolan DE, Gupta S (2014) PD-1 pathway inhibitors: changing the landscape of cancer immunotherapy. Cancer Control 21(3):231–237PubMedCrossRefGoogle Scholar
  168. 168.
    Balar AV, Weber JS (2017) PD-1 and PD-L1 antibodies in cancer: current status and future directions. Cancer Immunol Immunother. doi: 10.1007/s00262-017-1954-6 PubMedGoogle Scholar
  169. 169.
    Chow LQ, Haddad R, Gupta S, Mahipal A, Mehra R, Tahara M, Berger R, Eder JP, Burtness B, Lee SH, Keam B, Kang H, Muro K, Weiss J, Geva R, Lin CC, Chung HC, Meister A, Dolled-Filhart M, Pathiraja K, Cheng JD, Seiwert TY (2016) Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol. doi: 10.1200/JCO.2016.68.1478 Google Scholar
  170. 170.
    Weber JS, O’Day S, Urba W, Powderly J, Nichol G, Yellin M, Snively J, Hersh E (2008) Phase I/II study of ipilimumab for patients with metastatic melanoma. J Clin Oncol 26(36):5950–5956. doi: 10.1200/JCO.2008.16.1927 PubMedCrossRefGoogle Scholar
  171. 171.
    Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723. doi: 10.1056/NEJMoa1003466 PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Wolchok JD, Neyns B, Linette G, Negrier S, Lutzky J, Thomas L, Waterfield W, Schadendorf D, Smylie M, Guthrie T Jr, Grob JJ, Chesney J, Chin K, Chen K, Hoos A, O’Day SJ, Lebbe C (2010) Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol 11(2):155–164. doi: 10.1016/S1470-2045(09)70334-1 PubMedCrossRefGoogle Scholar
  173. 173.
    Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, Davidson N, Richards J, Maio M, Hauschild A, Miller WH Jr, Gascon P, Lotem M, Harmankaya K, Ibrahim R, Francis S, Chen TT, Humphrey R, Hoos A, Wolchok JD (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364(26):2517–2526. doi: 10.1056/NEJMoa1104621 PubMedCrossRefGoogle Scholar
  174. 174.
    Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P, Ferrucci PF, Hill A, Wagstaff J, Carlino MS, Haanen JB, Maio M, Marquez-Rodas I, McArthur GA, Ascierto PA, Long GV, Callahan MK, Postow MA, Grossmann K, Sznol M, Dreno B, Bastholt L, Yang A, Rollin LM, Horak C, Hodi FS, Wolchok JD (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373(1):23–34. doi: 10.1056/NEJMoa1504030 PubMedCrossRefGoogle Scholar
  175. 175.
    Grosso JF, Jure-Kunkel MN (2013) CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun 13:5PubMedPubMedCentralGoogle Scholar
  176. 176.
    Garrido F, Aptsiauri N, Doorduijn EM, Garcia Lora AM, van Hall T (2016) The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr Opin Immunol 39:44–51. doi: 10.1016/j.coi.2015.12.007 PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Thibodeau J, Bourgeois-Daigneault MC, Lapointe R (2012) Targeting the MHC class II antigen presentation pathway in cancer immunotherapy. Oncoimmunology 1(6):908–916. doi: 10.4161/onci.21205 PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Fruci D, Benevolo M, Cifaldi L, Lorenzi S, Lo Monaco E, Tremante E, Giacomini P (2012) Major histocompatibility complex class i and tumour immuno-evasion: how to fool T cells and natural killer cells at one time. Curr Oncol 19(1):39–41. doi: 10.3747/co.19.945 PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Hammerstrom AE, Cauley DH, Atkinson BJ, Sharma P (2011) Cancer immunotherapy: sipuleucel-T and beyond. Pharmacotherapy 31(8):813–828. doi: 10.1592/phco.31.8.813 PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Gilbert SC (2012) T-cell-inducing vaccines—what’s the future. Immunology 135(1):19–26. doi: 10.1111/j.1365-2567.2011.03517.x PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Goyvaerts C, Breckpot K (2015) Pros and Cons of antigen-presenting cell targeted tumor vaccines. J Immunol Res 2015:785634. doi: 10.1155/2015/785634 PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Small EJ, Fratesi P, Reese DM, Strang G, Laus R, Peshwa MV, Valone FH (2000) Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J Clin Oncol 18(23):3894–3903. doi: 10.1200/JCO.2000.18.23.3894 PubMedCrossRefGoogle Scholar
  183. 183.
    Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12(4):265–277. doi: 10.1038/nrc3258 PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH, Verjee SS, Jones LA, Hershberg RM (2006) Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol 24(19):3089–3094. doi: 10.1200/JCO.2005.04.5252 PubMedCrossRefGoogle Scholar
  185. 185.
    Pitt JM, Vetizou M, Daillere R, Roberti MP, Yamazaki T, Routy B, Lepage P, Boneca IG, Chamaillard M, Kroemer G, Zitvogel L (2016) Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity 44(6):1255–1269. doi: 10.1016/j.immuni.2016.06.001 PubMedCrossRefGoogle Scholar
  186. 186.
    Hellwig SM, Damen CA, van Adrichem NP, Blijham GH, Groenewegen G, Griffioen AW (1997) Endothelial CD34 is suppressed in human malignancies: role of angiogenic factors. Cancer Lett 120(2):203–211PubMedCrossRefGoogle Scholar
  187. 187.
    Griffioen AW, Damen CA, Blijham GH, Groenewegen G (1996) Endoglin/CD 105 may not be an optimal tumor endothelial treatment target. Breast Cancer Res Treat 39(2):239–242PubMedCrossRefGoogle Scholar
  188. 188.
    Griffioen AW, Damen CA, Martinotti S, Blijham GH, Groenewegen G (1996) Endothelial intercellular adhesion molecule-1 expression is suppressed in human malignancies: the role of angiogenic factors. Cancer Res 56(5):1111–1117PubMedGoogle Scholar
  189. 189.
    Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10(8):858–864. doi: 10.1038/nm1075 PubMedCrossRefGoogle Scholar
  190. 190.
    Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang LP, Gimotty PA, Gilks CB, Lal P, Zhang L, Coukos G (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475(7355):226–230. doi: 10.1038/nature10169 PubMedCrossRefGoogle Scholar
  191. 191.
    Chen Y, Liu YC, Sung YC, Ramjiawan RR, Lin TT, Chang CC, Jeng KS, Chang CF, Liu CH, Gao DY, Hsu FF, Duyverman AM, Kitahara S, Huang P, Dima S, Popescu I, Flaherty KT, Zhu AX, Bardeesy N, Jain RK, Benes CH, Duda DG (2017) Overcoming sorafenib evasion in hepatocellular carcinoma using CXCR4-targeted nanoparticles to co-deliver MEK-inhibitors. Sci Rep 7:44123. doi: 10.1038/srep44123 PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, Bronte V, Chouaib S (2014) PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211(5):781–790. doi: 10.1084/jem.20131916 PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Hato T, Goyal L, Greten TF, Duda DG, Zhu AX (2014) Immune checkpoint blockade in hepatocellular carcinoma: current progress and future directions. Hepatology 60(5):1776–1782. doi: 10.1002/hep.27246 PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Li B, Lalani AS, Harding TC, Luan B, Koprivnikar K, Huan T, Prell R, VanRoey MJ, Simmons AD, Jooss K (2006) Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clin Cancer Res 12(22):6808–6816. doi: 10.1158/1078-0432.CCR-06-1558 PubMedCrossRefGoogle Scholar
  195. 195.
    Huang KW, Wu HL, Lin HL, Liang PC, Chen PJ, Chen SH, Lee HI, Su PY, Wu WH, Lee PH, Hwang LH, Chen DS (2010) Combining antiangiogenic therapy with immunotherapy exerts better therapeutical effects on large tumors in a woodchuck hepatoma model. Proc Natl Acad Sci USA 107(33):14769–14774. doi: 10.1073/pnas.1009534107 PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Hodi FS, Lawrence D, Lezcano C, Wu X, Zhou J, Sasada T, Zeng W, Giobbie-Hurder A, Atkins MB, Ibrahim N, Friedlander P, Flaherty KT, Murphy GF, Rodig S, Velazquez EF, Mihm MC Jr, Russell S, DiPiro PJ, Yap JT, Ramaiya N, Van den Abbeele AD, Gargano M, McDermott D (2014) Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res 2(7):632–642. doi: 10.1158/2326-6066.CIR-14-0053 PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Wallin JJ, Bendell JC, Funke R, Sznol M, Korski K, Jones S, Hernandez G, Mier J, He X, Hodi FS, Denker M, Leveque V, Canamero M, Babitski G, Koeppen H, Ziai J, Sharma N, Gaire F, Chen DS, Waterkamp D, Hegde PS, McDermott DF (2016) Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat Commun 7:12624. doi: 10.1038/ncomms12624 PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Harrison RK (2016) Phase II and phase III failures: 2013–2015. Nat Rev Drug Discov 15(12):817–818. doi: 10.1038/nrd.2016.184 PubMedCrossRefGoogle Scholar
  199. 199.
    Seruga B, Ocana A, Amir E, Tannock IF (2015) Failures in Phase III: causes and consequences. Clin Cancer Res 21(20):4552–4560. doi: 10.1158/1078-0432.CCR-15-0124 PubMedCrossRefGoogle Scholar
  200. 200.
    Jain RK (2014) Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 26(5):605–622. doi: 10.1016/j.ccell.2014.10.006 PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Jain RK, Martin JD, Stylianopoulos T (2014) The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng 16:321–346. doi: 10.1146/annurev-bioeng-071813-105259 PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Weiss A, Nowak-Sliwinska P (2016) Current trends in multidrug optimization. J Lab Autom. doi: 10.1177/2472630316682338 PubMedGoogle Scholar
  203. 203.
    Nowak-Sliwinska P, Weiss A, Ding X, Dyson PJ, van den Bergh H, Griffioen AW, Ho CM (2016) Optimization of drug combinations using feedback system control. Nat Protoc 11(2):302–315. doi: 10.1038/nprot.2016.017 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Rakesh R. Ramjiawan
    • 1
    • 2
  • Arjan W. Griffioen
    • 2
  • Dan G. Duda
    • 1
  1. 1.E. L. Steele Laboratories for Tumor Biology, Department of Radiation OncologyMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  2. 2.Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center AmsterdamVU University Medical CenterAmsterdamThe Netherlands

Personalised recommendations