, Volume 20, Issue 1, pp 163–173 | Cite as

Angiopoietins as serum biomarkers for lymphatic anomalies

  • Timothy D. Le CrasEmail author
  • Paula S. Mobberley-Schuman
  • Mary Broering
  • Lin Fei
  • Cameron C. TrenorIII
  • Denise M. Adams
Original Paper


Vascular anomalies can cause significant morbidity and mortality. Advances in diagnosis will be improved if noninvasive biomarkers can be identified, as obtaining a tissue biopsy can worsen the disease and precipitate complications. The goal of this study was to identify biomarkers for vascular anomaly patients to aid diagnosis and potentially give insights into pathogenesis. Blood was collected at baseline and then 6 and 12 months after treatment with the mTOR inhibitor sirolimus. Patients groups included generalized lymphatic anomaly (GLA), kaposiform lymphangiomatosis (KLA) and kaposiform hemangioendothelioma (KHE) with or without the Kasabach–Merritt phenomenon (KMP) coagulopathy. Serum was obtained from healthy controls selected to match the age and sex of the patients (21 days–28.5 years; 42% males; 58% females). Angiogenic and lymphangiogenic factors (VEGF-A, C, D, Ang-1 and Ang-2) were measured in serum using ELISA. In lymphatic anomaly patients, baseline levels of VEGF-A and VEGF-D were not different compared to controls. Angiopoietin-2 (Ang-2) levels were near controls levels in GLA patients but 10-fold greater in KLA patients and 14-fold greater in KHE patients when the KMP coagulopathy was present but not when it was absent. VEGF-C and angiopoietin-1 (Ang-1) levels were lower in KHE patients with KMP. Our analyses suggest that Ang-2 and Ang-1 can be used as biomarkers to help identify KLA and KHE patients with KMP coagulopathy with high sensitivity and specificity. After 12 months of sirolimus treatment, Ang-2 levels were lower in KLA and KHE with KMP patients compared to baseline levels and with most patients showing a clinical response. Hence, serum Ang-2 and Ang-1 levels may help in the diagnosis of patients with lymphatic anomalies and are concordant to sirolimus response.


Vascular anomalies Generalized lymphatic anomaly Kaposiform lymphangiomatosis Kaposiform hemangioendothelioma Sirolimus Kasabach–Merritt 







Kaposiform lymphangiomatosis


General lymphatic anomaly


Kaposiform hemangioendothelioma


Kasabach–Merritt phenomenon



The authors would like to thank Tricia Pastura for assistance with the ELISA.


Grant funding support was received from the Federal Drug Administration (5RO1FD003712-04) and the Lymphatic Malformation Institute.

Supplementary material

10456_2016_9537_MOESM1_ESM.pdf (61 kb)
Supplemental figure 1: Levels of VEGF-A in the serum of controls. VEGF-A levels were measured by ELISA in the serum from controls to determine whether levels were different between males and females and changed with age. No significant differences in VEGF-A levels were detected between the age groups and males versus females in each age group (PDF 60 kb)
10456_2016_9537_MOESM2_ESM.pdf (59 kb)
Supplemental figure 2: Levels of VEGF-C in the serum of controls. VEGF-C levels were measured by ELISA in the serum from controls to determine whether levels were different between males and females and changed with age. No significant differences in VEGF-C levels were detected between the age groups and males versus females in each age group (PDF 59 kb)
10456_2016_9537_MOESM3_ESM.pdf (59 kb)
Supplemental figure 3: Levels of VEGF-D in the serum of controls. VEGF-D levels were measured by ELISA in the serum from controls to determine whether levels were different between males and females and changed with age. No significant differences in VEGF-D levels were detected between the age groups and males versus females in each age group (PDF 59 kb)
10456_2016_9537_MOESM4_ESM.pdf (59 kb)
Supplemental figure 4: Levels of VEGF-A in the serum of patients. VEGF-A levels were measured by ELISA in the serum of GLA, KLA and KHE patients prior to treatment with sirolimus and compared to levels in controls. VEGF-A levels were not significantly different from controls or when compared to other patient groups (PDF 58 kb)
10456_2016_9537_MOESM5_ESM.pdf (59 kb)
Supplemental figure 5: Levels of VEGF-C in the serum of patients. VEGF-C levels were measured by ELISA in the serum of GLA, KLA and KHE patients prior to treatment with Sirolimus and compared to controls. VEGF-C levels in GLA, KLA and KHE − KMP patient groups were not significantly different from controls but were 70% lower in KHE + KMP patients (P < 0.05) (PDF 59 kb)
10456_2016_9537_MOESM6_ESM.pdf (56 kb)
Supplemental figure 6: Levels of VEGF-D in the serum of patients. VEGF-D levels were measured by ELISA in the serum of GLA, KLA and KHE patients prior to treatment with sirolimus and compared to levels in controls. VEGF-D levels were not significantly different from controls or when compared to other patient groups (P > 0.05) (PDF 55 kb)
10456_2016_9537_MOESM7_ESM.pdf (63 kb)
Supplemental figure 7: Correlation of serum Ang-1 and VEGF-C levels with blood platelet counts in GLA, KLA and KHE + KMP patients. Pearson’s coefficient of correlation R is shown (PDF 62 kb)


  1. 1.
    Wassef M, Blei F, Adams D, Alomari A, Baselga E, Berenstein A, Burrows P, Frieden IJ, Garzon MC, Lopez-Gutierrez JC, Lord DJ, Mitchel S, Powell J, Prendiville J, Vikkula M, Board I, Scientific C (2015) Vascular anomalies classification: recommendations from the international society for the study of vascular anomalies. Pediatrics 136(1):e203–e214. doi: 10.1542/peds.2014-3673 CrossRefPubMedGoogle Scholar
  2. 2.
    Marler JJ, Fishman SJ, Kilroy SM, Fang J, Upton J, Mulliken JB, Burrows PE, Zurakowski D, Folkman J, Moses MA (2005) Increased expression of urinary matrix metalloproteinases parallels the extent and activity of vascular anomalies. Pediatrics 116(1):38–45. doi: 10.1542/peds.2004-1518 CrossRefPubMedGoogle Scholar
  3. 3.
    Adams DM, Trenor CC III, Hammill AM, Vinks AA, Patel MN, Chaudry G, Wentzel MS, Mobberley-Schuman PS, Campbell LM, Brookbank C, Gupta A, Chute C, Eile J, McKenna J, Merrow AC, Fei L, Hornung L, Seid M, Dasgupta AR, Dickie BH, Elluru RG, Lucky AW, Weiss B, Azizkhan RG (2016) Efficacy and safety of sirolimus in the treatment of complicated vascular anomalies. Pediatrics 137(2):1–10. doi: 10.1542/peds.2015-3257 Google Scholar
  4. 4.
    Croteau SE, Kozakewich HP, Perez-Atayde AR, Fishman SJ, Alomari AI, Chaudry G, Mulliken JB, Trenor CC III (2014) Kaposiform lymphangiomatosis: a distinct aggressive lymphatic anomaly. J Pediatr 164(2):383–388. doi: 10.1016/j.jpeds.2013.10.013 CrossRefPubMedGoogle Scholar
  5. 5.
    Fernandes VM, Fargo JH, Saini S, Guerrera MF, Marcus L, Luchtman-Jones L, Adams D, Meier ER (2015) Kaposiform lymphangiomatosis: unifying features of a heterogeneous disorder. Pediatr Blood Cancer 62(5):901–904. doi: 10.1002/pbc.25278 CrossRefPubMedGoogle Scholar
  6. 6.
    Safi F, Gupta A, Adams D, Anandan V, McCormack FX, Assaly R (2014) Kaposiform lymphangiomatosis, a newly characterized vascular anomaly presenting with hemoptysis in an adult woman. Ann Am Thorac Soc 11(1):92–95. doi: 10.1513/AnnalsATS.201308-287BC CrossRefPubMedGoogle Scholar
  7. 7.
    Trenor CC III, Chaudry G (2014) Complex lymphatic anomalies. Semin Pediatr Surg 23(4):186–190. doi: 10.1053/j.sempedsurg.2014.07.006 CrossRefPubMedGoogle Scholar
  8. 8.
    ISSVA Classification of Vascular Anomalies ©2014 International Society for the Study of Vascular Anomalies Available at Accessed April 2014
  9. 9.
    Hammill AM, Wentzel M, Gupta A, Nelson S, Lucky A, Elluru R, Dasgupta R, Azizkhan RG, Adams DM (2011) Sirolimus for the treatment of complicated vascular anomalies in children. Pediatr Blood Cancer 57(6):1018–1024. doi: 10.1002/pbc.23124 CrossRefPubMedGoogle Scholar
  10. 10.
    Requena L, Kutzner H (2013) Hemangioendothelioma. Semin Diagn Pathol 30(1):29–44. doi: 10.1053/j.semdp.2012.01.003 CrossRefPubMedGoogle Scholar
  11. 11.
    Croteau SE, Liang MG, Kozakewich HP, Alomari AI, Fishman SJ, Mulliken JB, Trenor CC III (2013) Kaposiform hemangioendothelioma: atypical features and risks of Kasabach-Merritt phenomenon in 107 referrals. J Pediatr 162(1):142–147. doi: 10.1016/j.jpeds.2012.06.044 CrossRefPubMedGoogle Scholar
  12. 12.
    Wang Z, Li K, Dong K, Xiao X, Zheng S (2015) Successful treatment of Kasabach-Merritt phenomenon arising from Kaposiform hemangioendothelioma by sirolimus. J Pediatr Hematol Oncol 37(1):72–73. doi: 10.1097/MPH.0000000000000068 CrossRefPubMedGoogle Scholar
  13. 13.
    Lackner H, Karastaneva A, Schwinger W, Benesch M, Sovinz P, Seidel M, Sperl D, Lanz S, Haxhija E, Reiterer F, Sorantin E, Urban CE (2015) Sirolimus for the treatment of children with various complicated vascular anomalies. Eur J Pediatr 174(12):1579–1584. doi: 10.1007/s00431-015-2572-y CrossRefPubMedGoogle Scholar
  14. 14.
    Jahnel J, Lackner H, Reiterer F, Urlesberger B, Urban C (2012) Kaposiform hemangioendothelioma with Kasabach-Merritt phenomenon: from vincristine to sirolimus. Klin Padiatr 224(6):395–397. doi: 10.1055/s-0032-1323823 CrossRefPubMedGoogle Scholar
  15. 15.
    Kai L, Wang Z, Yao W, Dong K, Xiao X (2014) Sirolimus, a promising treatment for refractory Kaposiform hemangioendothelioma. J Cancer Res Clin Oncol 140(3):471–476. doi: 10.1007/s00432-013-1549-3 CrossRefPubMedGoogle Scholar
  16. 16.
    Blatt J, Stavas J, Moats-Staats B, Woosley J, Morrell DS (2010) Treatment of childhood kaposiform hemangioendothelioma with sirolimus. Pediatr Blood Cancer 55(7):1396–1398. doi: 10.1002/pbc.22766 CrossRefPubMedGoogle Scholar
  17. 17.
    Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407(6801):242–248. doi: 10.1038/35025215 CrossRefPubMedGoogle Scholar
  18. 18.
    Mallory BP, Mead TJ, Wiginton DA, Kulkarni RM, Greenberg JM, Akeson AL (2006) Lymphangiogenesis in the developing lung promoted by VEGF-A. Microvasc Res 72(1–2):62–73. doi: 10.1016/j.mvr.2006.05.002 CrossRefPubMedGoogle Scholar
  19. 19.
    Secker GA, Harvey NL (2015) VEGFR signaling during lymphatic vascular development: from progenitor cells to functional vessels. Dev Dyn 244(3):323–331. doi: 10.1002/dvdy.24227 CrossRefPubMedGoogle Scholar
  20. 20.
    Karpanen T, Alitalo K (2008) VEGF-D: a modifier of embryonic lymphangiogenesis. Blood 112(5):1547–1548. doi: 10.1182/blood-2008-06-159343 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Enholm B, Karpanen T, Jeltsch M, Kubo H, Stenback F, Prevo R, Jackson DG, Yla-Herttuala S, Alitalo K (2001) Adenoviral expression of vascular endothelial growth factor-C induces lymphangiogenesis in the skin. Circ Res 88(6):623–629CrossRefPubMedGoogle Scholar
  22. 22.
    Coso S, Bovay E, Petrova TV (2014) Pressing the right buttons: signaling in lymphangiogenesis. Blood 123(17):2614–2624. doi: 10.1182/blood-2013-12-297317 CrossRefPubMedGoogle Scholar
  23. 23.
    Young LR, Inoue Y, McCormack FX (2008) Diagnostic potential of serum VEGF-D for lymphangioleiomyomatosis. N Engl J Med 358(2):199–200. doi: 10.1056/NEJMc0707517 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Young LR, Vandyke R, Gulleman PM, Inoue Y, Brown KK, Schmidt LS, Linehan WM, Hajjar F, Kinder BW, Trapnell BC, Bissler JJ, Franz DN, McCormack FX (2010) Serum vascular endothelial growth factor-D prospectively distinguishes lymphangioleiomyomatosis from other diseases. Chest 138(3):674–681. doi: 10.1378/chest.10-0573 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Karpanen T, Makinen T (2006) Regulation of lymphangiogenesis-from cell fate determination to vessel remodeling. Exp Cell Res 312(5):575–583. doi: 10.1016/j.yexcr.2005.10.034 CrossRefPubMedGoogle Scholar
  26. 26.
    Thurston G, Daly C (2012) The complex role of angiopoietin-2 in the angiopoietin-tie signaling pathway. Cold Spring Harb Perspect Med 2:a006550. doi: 10.1101/cshperspect.a006650 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York, ISBN:0-387-95457-0Google Scholar
  28. 28.
    Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39(4):561–577PubMedGoogle Scholar
  29. 29.
    Eklund L, Saharinen P (2013) Angiopoietin signaling in the vasculature. Exp Cell Res 319(9):1271–1280. doi: 10.1016/j.yexcr.2013.03.011 CrossRefPubMedGoogle Scholar
  30. 30.
    Gale NW, Thurston G, Hackett SF, Renard R, Wang Q, McClain J, Martin C, Witte C, Witte MH, Jackson D, Suri C, Campochiaro PA, Wiegand SJ, Yancopoulos GD (2002) Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 3(3):411–423CrossRefPubMedGoogle Scholar
  31. 31.
    Dellinger M, Hunter R, Bernas M, Gale N, Yancopoulos G, Erickson R, Witte M (2008) Defective remodeling and maturation of the lymphatic vasculature in Angiopoietin-2 deficient mice. Dev Biol 319(2):309–320. doi: 10.1016/j.ydbio.2008.04.024 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ong T, McClintock DE, Kallet RH, Ware LB, Matthay MA, Liu KD (2010) Ratio of angiopoietin-2 to angiopoietin-1 as a predictor of mortality in acute lung injury patients. Crit Care Med 38(9):1845–1851. doi: 10.1097/CCM.0b013e3181eaa5bf CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Parikh SM, Mammoto T, Schultz A, Yuan HT, Christiani D, Karumanchi SA, Sukhatme VP (2006) Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Med 3(3):e46. doi: 10.1371/journal.pmed.0030046 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Xie Z, Ghosh CC, Patel R, Iwaki S, Gaskins D, Nelson C, Jones N, Greipp PR, Parikh SM, Druey KM (2012) Vascular endothelial hyperpermeability induces the clinical symptoms of Clarkson disease (the systemic capillary leak syndrome). Blood 119(18):4321–4332. doi: 10.1182/blood-2011-08-375816 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yu Y, Varughese J, Brown LF, Mulliken JB, Bischoff J (2001) Increased Tie2 expression, enhanced response to angiopoietin-1, and dysregulated angiopoietin-2 expression in hemangioma-derived endothelial cells. Am J Pathol 159(6):2271–2280. doi: 10.1016/S0002-9440(10)63077-5 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Division of Pulmonary Biology, Department of Pediatrics, Cincinnati Children’s Hospital Medical CenterUniversity of CincinnatiCincinnatiUSA
  2. 2.Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical CenterUniversity of CincinnatiCincinnatiUSA
  3. 3.Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical CenterUniversity of CincinnatiCincinnatiUSA
  4. 4.Division of Hematology/Oncology, Vascular Anomalies Center, Boston Children’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations