, Volume 20, Issue 1, pp 55–71 | Cite as

BP-1T, an antiangiogenic benzophenone-thiazole pharmacophore, counteracts HIF-1 signalling through p53/MDM2-mediated HIF-1α proteasomal degradation

  • Prabhu Thirusangu
  • V. Vigneshwaran
  • T. Prashanth
  • B. R. Vijay Avin
  • Vikas H. Malojirao
  • H. Rakesh
  • Shaukath Ara Khanum
  • Riaz Mahmood
  • B. T. PrabhakarEmail author
Original Paper


Hypoxia is a feature of all solid tumours, contributing to tumour progression. Activation of HIF-1α plays a critical role in promoting tumour angiogenesis and metastasis. Since its expression is positively correlated with poor prognosis for cancer patients, HIF-1α is one of the most convincing anticancer targets. BP-1T is a novel antiproliferative agent with promising antiangiogenic effects. In the present study, the molecular mechanism underlying cytotoxic/antiangiogenic effects of BP-1T on tumour/non-tumour angiogenesis was evaluated. Evidences show that BP-1T exhibits potent cytotoxicity with prolonged activity and effectively regressed neovessel formation both in reliable non-tumour and tumour angiogenic models. The expression of CoCl2-induced HIF-1α was inhibited by BP-1T in various p53 (WT)-expressing cancer cells, including A549, MCF-7 and DLA, but not in mutant p53-expressing SCC-9 cells. Mechanistically, BP-1T mediates the HIF-1α proteasomal degradation by activating p53/MDM2 pathway and thereby downregulated HIF-1α-dependent angiogenic genes such as VEGF-A, Flt-1, MMP-2 and MMP-9 under hypoxic condition of in vitro and in vivo solid tumour, eventually leading to abolition of migration and invasion. Based on these observations, we conclude that BP-1T acts on HIF-1α degradation through p53/MDM2 proteasome pathway.


BP-1T HIF-1α p53 MDM2 Solid tumour Antiangiogenesis 



B.T. Prabhakar gratefully acknowledges the grant extended by DBT (6242-P37/RGCB/PMD/DBT/PBKR/2015), UGC (F.No.41-507/2012 (SR) and VGST (VGST/GRD231/CISEE/2013-14). B.T. Prabhakar expresses sincere thanks to UGC, Government of India for Raman post doctoral research internship at Medical University South Carolina (MUSC), Charleston, USA. Prabhu Thirusangu acknowledges the Lady Tata Memorial Trust (LTMT) (JRS/2014-15/LTMT dated 11-08-2014), Mumbai, for financial assistance and support. Shaukath Ara Khanum expresses their sincere gratitude to VGST [VGST/CISEE/2012-13/2882], Government of Karnataka for the financial assistance and support.

Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary material

10456_2016_9528_MOESM1_ESM.pdf (723 kb)
Supplementary material 1 (PDF 723 kb)


  1. 1.
    Cameliet P, Jain RK (2000) Angiogenesis in cancer and other disease. Nature 407(6801):249–257. doi: 10.1038/35025220 CrossRefGoogle Scholar
  2. 2.
    Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92(12):5510–5514. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Xia Y, Choi HK, Lee K (2012) Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur J Med Chem 49:24–40. doi: 10.1016/j.ejmech.2012.01.033 CrossRefPubMedGoogle Scholar
  4. 4.
    Dayan F, Mazure NM, Brahimi-Horn MC, Pouysségur J (2008) A dialogue between the hypoxia-inducible factor and the tumor microenvironment. Cancer Microenviron 1(1):53–68. doi: 10.1007/s12307-008-0006-3 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Semenza GL (2003) Targeting HIF1 for cancer therapy. Nat Rev Cancer 3(10):721–732. doi: 10.1038/nrc1187 CrossRefPubMedGoogle Scholar
  6. 6.
    Hong SS, Lee H, Kim KW (2004) HIF-1α: a valid therapeutic target for tumor therapy. Cancer Res Treat 36(6):343–353. doi: 10.4143/crt.2004.36.6.343 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW et al (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613. doi: 10.1128/MCB.16.9.4604 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676. doi: 10.1038/nm0603-669 CrossRefPubMedGoogle Scholar
  9. 9.
    Powis G, Kirkpatrick L (2004) Hypoxia inducible factor-1A as a cancer drug target. Mol Cancer Ther 3(5):647–654. PubMedGoogle Scholar
  10. 10.
    Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70(5):1469–1480. doi: 10.1124/mol.106.027029 CrossRefPubMedGoogle Scholar
  11. 11.
    Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q et al (2000) Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 14(1):34–44. doi: 10.1101/gad.14.1.34 PubMedPubMedCentralGoogle Scholar
  12. 12.
    Zhou CH, Zhang XP, Liu F, Wang W (2015) Modeling the interplay between the HIF-1 and p53 pathways in hypoxia. Sci Rep 5:13834. doi: 10.1038/srep13834 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Amelio I, Inoue S, Markert EK, Levine AJ, Knight RA, Mak TW, Melino G (2015) TAp73 opposes tumor angiogenesis by promoting hypoxia-inducible factor 1α degradation. Proc Natl Acad Sci USA 112(1):226–231. doi: 10.1073/pnas.1410609111 CrossRefPubMedGoogle Scholar
  14. 14.
    Joshi S, Singh AR, Durden DL (2014) MDM2 regulates hypoxic hypoxia inducible factor 1α stability in an E3 ligase, proteasome, and PTEN phosphatidyl inositol 3 kinase AKT dependent manner. J Biol Chem 289(33):22785–22797. doi: 10.1074/jbc.M114.587493 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chen D, Li M, Luo J, Gu W (2003) Direct interactions between HIF-1 alpha and MDM2 modulate p53 function. J Biol Chem 78(16):13595–13598. doi: 10.1074/jbc.C200694200 CrossRefGoogle Scholar
  16. 16.
    Shankar J, Thippegowda PB, Khanum SA (2009) Inhibition of HIF-1a activity by BP-1 ameliorates adjuvant induced arthritis in rats. Biochem Biophys Res Commun 387(2):223–228. doi: 10.1016/j.bbrc.2009.01.086 CrossRefPubMedGoogle Scholar
  17. 17.
    Ranganatha VL, Vijay Avin BR, Thirusangu P, Prashanth T, Prabhakar BT, Khanum SA (2013) Synthesis, angiopreventive activity, and in vivo tumor inhibition of novel benzophenone–benzimidazole analogs. Life Sci 93(23):904–911. doi: 10.1016/j.lfs.2013.10.001 CrossRefPubMedGoogle Scholar
  18. 18.
    Prabhakar BT, Khanum SA, Jayashree K, Salimath BP, Shashikanth S (2006) Antitumor and proapoptotic effect of novel synthetic benzophenone analogues in Ehrlich ascites tumor cells. Bioorg Med Chem 14(2):435–446. doi: 10.1016/j.bmc.2005.08.039 CrossRefPubMedGoogle Scholar
  19. 19.
    Prabhakar BT, KhanumSA SS, Salimath BP (2006) Antiangiogenic effect of 2-benzoylphenoxy acetamide in EAT cell is mediated by HIF-1α and down regulation of VEGF of in-vivo. Invest N Drugs 24(6):471–478. doi: 10.1007/s10637-006-6587-0 CrossRefGoogle Scholar
  20. 20.
    Vijay Avin BR, Thirusangu P, Ranganatha VL, Firdouse A, Prabhakar BT, Khanum SA (2014) Synthesis and tumor inhibitory activity of novel coumarin analogs targeting angiogenesis and apoptosis. Eur J Med Chem 75:211–221. doi: 10.1016/j.ejmech.2014.01.050 CrossRefPubMedGoogle Scholar
  21. 21.
    Prashanth T, Thirusangu P, Vijay Avin BR, Ranganatha VL, Prabhakar BT, Khanum SA (2014) Synthesis and evaluation of novel benzophenone-thiazole derivatives as potent VEGF-A inhibitors. Eur J Med Chem 87:274–283. doi: 10.1016/j.ejmech.2014.09.069 CrossRefPubMedGoogle Scholar
  22. 22.
    Xu LF, Ni JY, Sun HL, Chen YT, Wu YD (2013) Effects of hypoxia-inducible factor-1α silencing on the proliferation of CBRH-7919 hepatoma cells. World J Gastroenterol 19(11):1749–1759. doi: 10.3748/wjg.v19.i11.1749 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bair AM, Thippegowda PB, Freichel M, Cheng N, Ye RD, Vogel SM, Yu Y, Flockerzi V, Malik AB, Tiruppathi C (2009) Ca2+ entry via TRPC channels is necessary for thrombin-induced NF-kappaB activation in endothelial cells through AMP-activated protein kinase and protein kinase Cdelta. J Biol Chem 284(1):563–574. doi: 10.1074/jbc.M803984200 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C (2006) Clonogenic assay of cells in vitro. Nat Protoc 1(5):2315–2319. doi: 10.1038/nprot.2006.339 CrossRefPubMedGoogle Scholar
  25. 25.
    Cory G (2011) Scratch-wound assay. Methods Mol Biol 769:25–30. doi: 10.1007/978-1-61779-207-6_2 CrossRefPubMedGoogle Scholar
  26. 26.
    Tolboom TC, Huizinga TW (2007) In vitro matrigel fibroblast invasion assay. Methods Mol Med 135:413–421. doi: 10.1007/978-1-59745-401-8_27 CrossRefPubMedGoogle Scholar
  27. 27.
    Sys GM, Lapeire L, Stevens N, Favoreel H, Forsyth R, Bracke M, De Wever O (2013) The in ovo CAM-assay as a xenograft model for sarcoma. J Vis Exp 17(77):e50522. doi: 10.3791/50522 Google Scholar
  28. 28.
    Olfa KZ, Jose L, Salma D, Amine B, Najet SA, Nicolas A et al (2005) Lebestatin, a disintegrin from Macrovipera venom, inhibits integrin-mediated cell adhesion, migration and angiogenesis. Lab Investig 85(12):1507–1516. doi: 10.1038/labinvest.3700350 PubMedGoogle Scholar
  29. 29.
    Rogers MS, Birsner AE, D’Amato RJ (2007) The mouse cornea micropocket angiogenesis assay. Nat Protoc 2(10):2545–2550. doi: 10.1038/nprot.2007.368 CrossRefPubMedGoogle Scholar
  30. 30.
    Kruger EA, Duray PH, Tsokos MG et al (2000) Endostatin inhibits microvessel formation in the ex vivo rat aortic ring angiogenesis assay. Biochem Biophys Res Commun 268(1):183–191. doi: 10.1006/bbrc.1999.2018 CrossRefPubMedGoogle Scholar
  31. 31.
    Vijay Avin BR, Prabhu T, Ramesh CK, Vigneshwaran V, Riaz M, Jayashree K, Prabhakar BT (2014) New role of lupeol in reticence of angiogenesis, the cellular parameterof neoplastic progression in tumorigenesis models through altered gene expression. Biochem Biophys Res Commun 448(2):139–144. doi: 10.1016/j.bbrc.2014.04.090 CrossRefPubMedGoogle Scholar
  32. 32.
    Hegde M, Karki SS, Thomas E, Kumar S, Panjamurthy K, Ranganatha SR, Rangappa KS, Choudhary B, Raghavan SC (2012) Novel levamisole derivative induces extrinsic pathway of apoptosis in cancer cells and inhibits tumor progression in mice. PLoS One 7(9):e43632. doi: 10.1371/journal.pone.0043632 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zheng Y, Ni Y, Huang X, Wang Z, Han W (2013) Overexpression of HIF-1α indicates a poor prognosis in tongue carcinoma and may be associated with tumour metastasis. Oncol Lett 5(4):1285–1289. doi: 10.3892/ol.2013.1185 PubMedPubMedCentralGoogle Scholar
  34. 34.
    Jayasooriya RG, Lee YG, Kang CH, Lee KT, Choi YH, Park SY, Hwang JK, Kim GY (2013) Piceatannol inhibits MMP-9-dependent invasion of tumor necrosis factor-α-stimulated DU145 cells by suppressing the Akt-mediated nuclear factor-κB pathway. Oncol Lett 5(1):341–347. doi: 10.3892/ol.2012.968 PubMedGoogle Scholar
  35. 35.
    Brown JM, Giaccia AJ (1998) The unique physiology of solid tumours: opportunities (and problems) for cancer therapy. Cancer Res 58(7):1408–1416. PubMedGoogle Scholar
  36. 36.
    Singh RP, Agarwal R (2004) A cancer chemopreventive agent silibinin, targets mitogenic and survival signaling in prostate cancer. Mutat Res 555(1–2):21–32. doi: 10.1016/j.mrfmmm.2004.05.017 CrossRefPubMedGoogle Scholar
  37. 37.
    De Castro G, Jr AA (2006) Side effects of anti-cancer molecular-targeted therapies (not monoclonal antibodies. Curr Opin Oncol 18(4):307–315. doi: 10.1097/01.cco.0000228733.55132.ea CrossRefPubMedGoogle Scholar
  38. 38.
    Gurupadaswamy HD, Thirusangu P, Vijay Avin BR, Vigneshwaran V et al (2014) DAO-9 (2,5-di(4-aryloylaryloxymethyl)-1,3,4-oxadiazole) exhibits p53 induced apoptogenesis through caspase-3 mediated endonuclease activity in murine carcinoma. Biomed Pharmacother 68(6):791–797. doi: 10.1016/j.biopha.2014.07.004 CrossRefPubMedGoogle Scholar
  39. 39.
    Al-Ghorbani M, Thirusangu P, Gurupadaswamy HD, Girish V, Neralagundi HGS, Prabhakar BT, Khanum SA (2016) Synthesis and antiproliferative activity of benzophenone tagged pyridine analogues towards activation of caspase activated DNase mediated nuclear fragmentation in Dalton’s lymphoma. Bioorg Chem 65:73–81. doi: 10.1016/j.bioorg.2016.02.001 CrossRefPubMedGoogle Scholar
  40. 40.
    Johnston RL, Wockner L, McCart Reed AE, Wiegmans A, Chenevix-Trench G et al (2016) High content screening application for cell-type specific behaviour in heterogeneous primary breast epithelial subpopulations. Breast Cancer Res 18(1):18. doi: 10.1186/s13058-016-0681-9 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Jubb AM, Harris AL (2010) Biomarkers to predict the clinical efficacy of bevacizumab in cancer. Lancet Oncol 11(12):1172–1183. doi: 10.1016/S1470-2045(10)70232-1 CrossRefPubMedGoogle Scholar
  42. 42.
    Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2(10):795–803. doi: 10.1038/nrc909 CrossRefPubMedGoogle Scholar
  43. 43.
    Folkman J (1972) Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 175(3):409–416CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Bhat TA, Singh RP (2008) Tumor angiogenesis—a potential target in cancer chemoprevention. Food Chem Toxicol 46(4):1334–1345. doi: 10.1016/j.fct.2007.08.032 CrossRefPubMedGoogle Scholar
  45. 45.
    Al-Ghorbani M, Vigneshwaran V, Ranganatha VL, Prabhakar BT, Khanum SA (2015) Synthesis of oxadiazole–morpholine derivatives and manifestation of the repressed CD31 microvessel density (MVD) as tumoral angiogenic parameters in Dalton’s Lymphoma. Bioorg Chem 60:136–146. doi: 10.1016/j.bioorg.2015.04.008 CrossRefPubMedGoogle Scholar
  46. 46.
    Talmadge JE, Singh RK, Fidler IJ, Raz A (2007) Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol 170(3):793–804. doi: 10.2353/ajpath.2007.060929 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Jin Y, Wang H, Liang X, Ma J, Wang Y (2014) Pathological and prognostic significance of hypoxia-inducible factor 1alpha expression in epithelial ovarian cancer: a meta-analysis. Tumour Biol 35(8):8149–8159. doi: 10.1007/s13277-014-2059-x CrossRefPubMedGoogle Scholar
  48. 48.
    Myllyharju J (2013) Prolyl 4-hydroxylases, master regulators of the hypoxia response. Acta Physiol (Oxf) 208(2):148–165. doi: 10.1111/apha.12096 CrossRefGoogle Scholar
  49. 49.
    Bratslavsky G, Sudarshan S, Neckers L, Linehan WM (2007) Pseudohypoxic pathways in renal cell carcinoma. Clin Cancer Res 13(16):4667–4671. doi: 10.1158/1078-0432.CCR-06-2510 CrossRefPubMedGoogle Scholar
  50. 50.
    An WG, Kanekal M, Simon MC, Maltepe E, Blagosklonny MV, Neckers LM (1998) Stabilization of wildtype p53 by hypoxia-inducible factor 1α. Nature 392(6674):405–408. doi: 10.1038/32925 CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang H, Zhang Z, Xu Y, Xing L, Liu J, Li J, Tan Q (2004) The expression of hypoxia inducible factor 1-alpha in lung cancer and its correlation with p53 and VEGF. J Huazhong Univ Sci Technol Med Sci 24(2):124–127. doi: 10.1007/BF02885408 CrossRefPubMedGoogle Scholar
  52. 52.
    Fan L, Li J, Yu Z, Dang X, Wang K (2014) The hypoxia-inducible factor pathway, prolyl hydroxylase domain protein inhibitors, and their roles in bone repair and regeneration. Biomed Res Int 2014:239356. doi: 10.1155/2014/239356 PubMedPubMedCentralGoogle Scholar
  53. 53.
    Schmid T, Zhou J, Brüne B (2004) HIF-1 and p53: communication of transcription factors under hypoxia. J Cell Mol Med 8(4):423–431. doi: 10.1111/j.1582-4934.2004.tb00467.x CrossRefPubMedGoogle Scholar
  54. 54.
    Sermeus A, Michiels C (2011) Reciprocal influence of the p53 and the hypoxic pathways. Cell Death Dis 2:e164. doi: 10.1038/cddis.2011.48 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Brown JM (2007) Tumor hypoxia in cancer therapy. Methods Enzymol 35:297–321. doi: 10.1016/S0076-6879(07)35015-5 Google Scholar
  56. 56.
    Semenza GL (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 123(9):3664–3671. doi: 10.1172/JCI67230 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Vigneshwaran V, Thirusangu P, Madhusudana S, Krishna V, Pramod SN, Prabhakar BT (2016) The latex sap of the ‘Old World Plant’ Lagenaria siceraria with potent lectin activity mitigates neoplastic malignancy targeting neovasculature and cell death. Int Immunopharmacol 39:158–171. doi: 10.1016/j.intimp.2016.07.024 CrossRefPubMedGoogle Scholar
  58. 58.
    Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3(12):1–24. doi: 10.1101/cshperspect.a005058 CrossRefGoogle Scholar
  59. 59.
    Ryan HE, Poloni M, McNulty W et al (2000) Hypoxia-inducible factor-1a is a positive factor in solid tumor growth. Cancer Res 60(15):4010–4015. PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Prabhu Thirusangu
    • 1
  • V. Vigneshwaran
    • 1
  • T. Prashanth
    • 2
  • B. R. Vijay Avin
    • 1
    • 3
  • Vikas H. Malojirao
    • 1
  • H. Rakesh
    • 1
  • Shaukath Ara Khanum
    • 2
  • Riaz Mahmood
    • 4
  • B. T. Prabhakar
    • 1
    Email author
  1. 1.Molecular Biomedicine Laboratory, Postgraduate Department of Studies and Research in Biotechnology, Sahyadri Science College (Autonomous)Kuvempu UniversityShivamoggaIndia
  2. 2.Department of Chemistry, Yuvaraja’s College (Autonomous)University of MysoreMysoreIndia
  3. 3.Department of Pharmacology, Center for Lung and Vascular BiologyUniversity of Illinois at ChicagoChicagoUSA
  4. 4.Postgraduate Department of Studies and Research in Biotechnology and BioinformaticsKuvempu UniversityShankaraghatta, ShivamoggaIndia

Personalised recommendations