, Volume 19, Issue 4, pp 451–461 | Cite as

Persistent infiltration and pro-inflammatory differentiation of monocytes cause unresolved inflammation in brain arteriovenous malformation

  • Rui Zhang
  • Zhenying Han
  • Vincent Degos
  • Fanxia Shen
  • Eun-Jung Choi
  • Zhengda Sun
  • Shuai Kang
  • Michael Wong
  • Wan Zhu
  • Lei Zhan
  • Helen M. Arthur
  • S. Paul Oh
  • Marie E. Faughnan
  • Hua Su
Original Paper


An abnormally high number of macrophages are present in human brain arteriovenous malformations (bAVM) with or without evidence of prior hemorrhage, causing unresolved inflammation that may enhance abnormal vascular remodeling and exacerbate the bAVM phenotype. The reasons for macrophage accumulation at the bAVM sites are not known. We tested the hypothesis that persistent infiltration and pro-inflammatory differentiation of monocytes in angiogenic tissues increase the macrophage burden in bAVM using two mouse models and human monocytes. Mouse bAVM was induced through deletion of AVM causative genes, Endoglin (Eng) globally or Alk1 focally, plus brain focal angiogenic stimulation. An endothelial cell and vascular smooth muscle cell co-culture system was used to analyze monocyte differentiation in the angiogenic niche. After angiogenic stimulation, the Eng-deleted mice had fewer CD68+ cells at 2 weeks (P = 0.02), similar numbers at 4 weeks (P = 0.97), and more at 8 weeks (P = 0.01) in the brain angiogenic region compared with wild-type (WT) mice. Alk1-deficient mice also had a trend toward more macrophages/microglia 8 weeks (P = 0.064) after angiogenic stimulation and more RFP+ bone marrow-derived macrophages than WT mice (P = 0.01). More CD34+ cells isolated from peripheral blood of patients with ENG or ALK1 gene mutation differentiated into macrophages than those from healthy controls (P < 0.001). These data indicate that persistent infiltration and pro-inflammatory differentiation of monocytes might contribute to macrophage accumulation in bAVM. Blocking macrophage homing to bAVM lesions should be tested as a strategy to reduce the severity of bAVM.


Angiogenesis Animal models Arteriovenous malformations Cerebrovascular disease Macrophages Microglia 



This study was supported by grants to H. Su from the National Institutes of Health (R01 NS027713, R01 HL122774 and R21 NS083788), and from the Michael Ryan Zodda Foundation and the UCSF Research Evaluation and Allocation Committee (REAC). We thank members of the UCSF BAVM Study Project ( for their support, and Voltaire Gungab for assistance with manuscript preparation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted.

Supplementary material

10456_2016_9519_MOESM1_ESM.pdf (235 kb)
Supplementary material 1 (PDF 235 kb)


  1. 1.
    Kim H, Su H, Weinsheimer S, Pawlikowska L, Young WL (2011) Brain arteriovenous malformation pathogenesis: a response-to-injury paradigm. Acta Neurochir Suppl 111:83–92CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chen Y, Zhu W, Bollen AW, Lawton MT, Barbaro NM, Dowd CF, Hashimoto T, Yang GY, Young WL (2008) Evidence of inflammatory cell involvement in brain arteriovenous malformations. Neurosurgery 62:1340–1349CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chen Y, Pawlikowska L, Yao JS, Shen F, Zhai W, Achrol AS, Lawton MT, Kwok PY, Yang GY, Young WL (2006) Interleukin-6 involvement in brain arteriovenous malformations. Ann Neurol 59:72–80CrossRefPubMedGoogle Scholar
  4. 4.
    Chen Y, Fan Y, Poon KY, Achrol AS, Lawton MT, Zhu Y, McCulloch CE, Hashimoto T, Lee C, Barbaro NM, Bollen AW, Yang GY, Young WL (2006) MMP-9 expression is associated with leukocytic but not endothelial markers in brain arteriovenous malformations. Front Biosci 11:3121–3128CrossRefPubMedGoogle Scholar
  5. 5.
    Guo Y, Tihan T, Lawton MT, Kim H, Young WL, Zhao Y, Su H (2014) Distinctive distribution of lymphocytes in unruptured and previously untreated brain arteriovenous malformation. Neuroimmunol Neuroinflamm 1:147–152CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ma L, Guo Y, Zhao YL, Su H (2015) The role of macrophage in the pathogenesis of brain arteriovenous malformation. Int J Hematol Res 1:52–56CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Achrol AS, Pawlikowska L, McCulloch CE, Poon KY, Ha C, Zaroff JG, Johnston SC, Lee C, Lawton MT, Sidney S, Marchuk D, Kwok PY, Young WL (2006) Tumor necrosis factor-alpha-238G>A promoter polymorphism is associated with increased risk of new hemorrhage in the natural course of patients with brain arteriovenous malformations. Stroke 37:231–234CrossRefPubMedGoogle Scholar
  8. 8.
    Pawlikowska L, Tran MN, Achrol AS, McCulloch CE, Ha C, Lind DL, Hashimoto T, Zaroff J, Lawton MT, Marchuk DA, Kwok PY, Young WL (2004) Polymorphisms in genes involved in inflammatory and angiogenic pathways and the risk of hemorrhagic presentation of brain arteriovenous malformations. Stroke 35:2294–2300CrossRefPubMedGoogle Scholar
  9. 9.
    Hashimoto T, Lawton MT, Wen G, Yang GY, Chaly T Jr, Stewart CL, Dressman HK, Barbaro NM, Marchuk DA, Young WL (2004) Gene microarray analysis of human brain arteriovenous malformations. Neurosurgery 54:410–423 discussion 423–425 CrossRefPubMedGoogle Scholar
  10. 10.
    Walker EJ, Su H, Shen F, Choi EJ, Oh SP, Chen G, Lawton MT, Kim H, Chen Y, Chen W, Young WL (2011) Arteriovenous malformation in the adult mouse brain resembling the human disease. Ann Neurol 69:954–962CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chen W, Guo Y, Walker EJ, Shen F, Jun K, Oh SP, Degos V, Lawton MT, Tihan T, Davalos D, Akassoglou K, Nelson J, Pile-Spellman J, Su H, Young WL (2013) Reduced mural cell coverage and impaired vessel integrity after angiogenic stimulation in the Alk1-deficient brain. Arterioscler Thromb Vasc Biol 33:305–310CrossRefPubMedGoogle Scholar
  12. 12.
    Chen W, Sun Z, Han Z, Jun K, Camus M, Wankhede M, Mao L, Arnold T, Young WL, Su H (2014) De novo cerebrovascular malformation in the adult mouse after endothelial Alk1 deletion and angiogenic stimulation. Stroke 45:900–902CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Choi EJ, Chen W, Jun K, Arthur HM, Young WL, Su H (2014) Novel brain arteriovenous malformation mouse models for type 1 hereditary hemorrhagic telangiectasia. PLoS One 9:e88511CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bharatha A, Faughnan ME, Kim H, Pourmohamad T, Krings T, Bayrak-Toydemir P, Pawlikowska L, McCulloch CE, Lawton MT, Dowd CF, Young WL, Terbrugge KG (2012) Brain arteriovenous malformation multiplicity predicts the diagnosis of hereditary hemorrhagic telangiectasia: quantitative assessment. Stroke 43:72–78CrossRefPubMedGoogle Scholar
  15. 15.
    Post S, Smits AM, van den Broek AJ, Sluijter JP, Hoefer IE, Janssen BJ, Snijder RJ, Mager JJ, Pasterkamp G, Mummery CL, Doevendans PA, Goumans MJ (2010) Impaired recruitment of HHT-1 mononuclear cells to the ischaemic heart is due to an altered CXCR4/CD26 balance. Cardiovasc Res 85:494–502CrossRefPubMedGoogle Scholar
  16. 16.
    Dingenouts CK, Goumans MJ, Bakker W (2015) Mononuclear cells and vascular repair in HHT. Front Genet 6:114CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    van Laake LW, van den Driesche S, Post S, Feijen A, Jansen MA, Driessens MH, Mager JJ, Snijder RJ, Westermann CJ, Doevendans PA, van Echteld CJ, ten Dijke P, Arthur HM, Goumans MJ, Lebrin F, Mummery CL (2006) Endoglin has a crucial role in blood cell-mediated vascular repair. Circulation 114:2288–2297CrossRefPubMedGoogle Scholar
  18. 18.
    Rossi E, Sanz-Rodriguez F, Eleno N, Duwell A, Blanco FJ, Langa C, Botella LM, Cabanas C, Lopez-Novoa JM, Bernabeu C (2013) Endothelial endoglin is involved in inflammation: role in leukocyte adhesion and transmigration. Blood 121:403–415CrossRefPubMedGoogle Scholar
  19. 19.
    Young K, Conley B, Romero D, Tweedie E, O’Neill C, Pinz I, Brogan L, Lindner V, Liaw L, Vary CP (2012) BMP9 regulates endoglin-dependent chemokine responses in endothelial cells. Blood 120:4263–4273CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Choi EJ, Walker EJ, Jun K, Kuo R, Su H, Young WL (2012) Endoglin deficiency in bone marrow is sufficient to cause vascular dysplasia in the adult mouse brain after VEGF stimulation [Abstract]. Stroke 43:A3153CrossRefGoogle Scholar
  21. 21.
    Shen F, Degos V, Han Z, Choi EJ, Young WL, Su H (2013) Endoglin deficiency exacerbates ischemic brain injury [Abstract]. Stroke 44:ATMP69CrossRefGoogle Scholar
  22. 22.
    Zucco L, Zhang Q, Kuliszewski MA, Kandic I, Faughnan ME, Stewart DJ, Kutryk MJ (2014) Circulating angiogenic cell dysfunction in patients with hereditary hemorrhagic telangiectasia. PLoS One 9:e89927CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Allinson KR, Carvalho RL, van den Brink S, Mummery CL, Arthur HM (2007) Generation of a floxed allele of the mouse Endoglin gene. Genesis 45:391–395CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Choi EJ, Walker EJ, Degos V, Jun K, Kuo R, Su H, Young WL (2013) Endoglin deficiency in bone marrow is sufficient to cause cerebrovascular dysplasia in the adult mouse after vascular endothelial growth factor stimulation. Stroke 44:795–798CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Park SO, Lee YJ, Seki T, Hong KH, Fliess N, Jiang Z, Park A, Wu X, Kaartinen V, Roman BL, Oh SP (2008) ALK5- and TGFBR2-independent role of ALK1 in the pathogenesis of hereditary hemorrhagic telangiectasia type 2 (HHT2). Blood 111:633–642CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Saederup N, Cardona AE, Croft K, Mizutani M, Cotleur AC, Tsou CL, Ransohoff RM, Charo IF (2010) Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS One 5:e13693CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chen W, Young WL, Su H (2014) Induction of brain arteriovenous malformation in the adult mouse. Methods Mol Biol 1135:309–316CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Shih YT, Wang MC, Yang TL, Zhou J, Lee DY, Lee PL, Yet SF, Chiu JJ (2012) beta2-Integrin and Notch-1 differentially regulate CD34+ CD31+ cell plasticity in vascular niches. Cardiovas Res 96:296–307CrossRefGoogle Scholar
  29. 29.
    Shen F, Degos V, Chu PL, Han Z, Westbroek EM, Choi EJ, Marchuk D, Kim H, Lawton MT, Maze M, Young WL, Su H (2014) Endoglin deficiency impairs stroke recovery. Stroke 45:2101–2106CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hao Q, Liu J, Pappu R, Su H, Rola R, Gabriel RA, Lee CZ, Young WL, Yang GY (2008) Contribution of bone marrow-derived cells associated with brain angiogenesis is primarily through leucocytes and macrophages. Arterioscler Thromb Vasc Biol 28:2151–2157CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Guo Y, Saunders T, Su H, Kim H, Akkoc D, Saloner DA, Hetts SW, Hess C, Lawton MT, Bollen AW, Pourmohamad T, McCulloch CE, Tihan T, Young WL (2012) Silent intralesional microhemorrhage as a risk factor for brain arteriovenous malformation rupture. Stroke 43:1240–1246CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Aihara K, Mogi M, Shibata R, Bishop-Bailey D, Reilly MP (2012) Inflammation and vascular remodeling. Int J Vasc Med 2012:596796PubMedPubMedCentralGoogle Scholar
  33. 33.
    Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82CrossRefPubMedGoogle Scholar
  34. 34.
    Degos V, Maze M, Vacas S, Hirsch J, Guo Y, Shen F, Jun K, van Rooijen N, Gressens P, Young WL, Su H (2013) Bone fracture exacerbates murine ischemic cerebral injury. Anesthesiology 118:1362–1372CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Rui Zhang
    • 1
  • Zhenying Han
    • 1
  • Vincent Degos
    • 1
    • 2
  • Fanxia Shen
    • 1
  • Eun-Jung Choi
    • 1
  • Zhengda Sun
    • 3
  • Shuai Kang
    • 1
  • Michael Wong
    • 1
  • Wan Zhu
    • 1
  • Lei Zhan
    • 1
  • Helen M. Arthur
    • 4
  • S. Paul Oh
    • 5
  • Marie E. Faughnan
    • 6
  • Hua Su
    • 1
  1. 1.Department of Anesthesia and Perioperative Care, Center for Cerebrovascular ResearchUniversity of California, San FranciscoSan FranciscoUSA
  2. 2.INSERM, U676Hôpital Robert DebréParisFrance
  3. 3.Department of RadiologyUniversity of California, San FranciscoSan FranciscoUSA
  4. 4.Institute of Genetic Medicine, International Centre for LifeNewcastle UniversityNewcastleUK
  5. 5.Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUSA
  6. 6.Department of MedicineUniversity of TorontoTorontoCanada

Personalised recommendations