Advertisement

Angiogenesis

, Volume 19, Issue 3, pp 339–358 | Cite as

VEGF receptor-2-specific signaling mediated by VEGF-E induces hemangioma-like lesions in normal and in malignant tissue

  • Ernesta FagianiEmail author
  • Pascal Lorentz
  • Ruben Bill
  • Kirusigan Pavotbawan
  • Lucie Kopfstein
  • Gerhard Christofori
Original Paper

Abstract

Viral VEGF-E (ovVEGF-E), a homolog of VEGF-A, was discovered in the genome of Orf virus. Together with VEGF-A, B, C, D, placental growth factor (PlGF) and snake venom VEGF (svVEGF), ovVEGF-E is a member of the VEGF family of potent angiogenesis factors with a bioactivity similar to VEGF-A: it induces proliferation, migration and sprouting of cultured vascular endothelial cells and proliferative lesions in the skin of sheep, goat and man that are characterized by massive capillary proliferation and dilation. These biological functions are mediated exclusively via its interaction with VEGF receptor-2 (VEGFR-2). Here, we have generated transgenic mice specifically expressing ovVEGF-E in β-cells of the endocrine pancreas (Rip1VEGF-E; RVE). RVE mice show an increase in number and size of the islets of Langerhans and a distorted organization of insulin and glucagon-expressing cells. Islet endothelial cells of RVE mice hyper-proliferate and form increased numbers of functional blood vessels. In addition, the formation of disorganized lymphatic vessels and increased immune cell infiltration is observed. Upon crossing RVE single-transgenic mice with Rip1Tag2 (RT2) transgenic mice, a well-studied model of pancreatic β-cell carcinogenesis, double-transgenic mice (RT2;RVE) display hyper-proliferation of endothelial cells resulting in the formation of hemangioma-like lesions. In addition, RT2;RVE mice exhibit activated lymphangiogenesis at the tumor periphery and increased neutrophil and macrophage tumor infiltration and micro-metastasis to lymph nodes and lungs. These phenotypes markedly differ from the phenotypes observed with the transgenic expression of the other VEGF family members in β-cells of normal mice and of RT2 mice.

Keywords

VEGFR-2 VEGF-E Hemangioma-like Tumor angiogenesis Orf virus 

Notes

Acknowledgments

We are grateful to H. Antoniadis, U. Schmieder and R. Jost for the technical support. We thank C. Dehio (Biocenter, University of Basel) for important reagents and M. Saxena (Department of Biomedicine, University of Basel) for critical comments on the manuscript. This work was supported by a Collaborative Cancer Research Project of the Swiss Cancer League (CCRP OCS-01812-12-2005) and MD-PhD fellowships to R. B. and L. K. by the Swiss National Science Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10456_2016_9508_MOESM1_ESM.pdf (14 mb)
Supplementary material 1 (PDF 14367 kb)
10456_2016_9508_MOESM2_ESM.pdf (11 mb)
Supplementary material 2 (PDF 11231 kb)
10456_2016_9508_MOESM3_ESM.pdf (22.3 mb)
Supplementary material 3 (PDF 22851 kb)
10456_2016_9508_MOESM4_ESM.pdf (763 kb)
Supplementary material 4 (PDF 764 kb)
10456_2016_9508_MOESM5_ESM.pdf (21.4 mb)
Supplementary material 5 (PDF 21945 kb)
10456_2016_9508_MOESM6_ESM.docx (128 kb)
Supplementary material 6 (DOCX 129 kb)

References

  1. 1.
    Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936. doi: 10.1038/nature04478 CrossRefPubMedGoogle Scholar
  2. 2.
    Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. doi: 10.1038/nature10144 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. New Engl J Med 285(21):1182–1186. doi: 10.1056/NEJM197111182852108 CrossRefPubMedGoogle Scholar
  4. 4.
    Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410. doi: 10.1038/nrc1093 CrossRefPubMedGoogle Scholar
  5. 5.
    Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439. doi: 10.1038/380435a0 CrossRefPubMedGoogle Scholar
  6. 6.
    Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573):439–442. doi: 10.1038/380439a0 CrossRefPubMedGoogle Scholar
  7. 7.
    Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7(5):359–371. doi: 10.1038/nrm1911 CrossRefPubMedGoogle Scholar
  8. 8.
    Shibuya M (2011) Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2(12):1097–1105. doi: 10.1177/1947601911423031 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Goel HL, Mercurio AM (2013) VEGF targets the tumour cell. Nat Rev Cancer 13(12):871–882. doi: 10.1038/nrc3627 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376(6535):62–66. doi: 10.1038/376062a0 CrossRefPubMedGoogle Scholar
  11. 11.
    Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci USA 95(16):9349–9354CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376(6535):66–70. doi: 10.1038/376066a0 CrossRefPubMedGoogle Scholar
  13. 13.
    Murakami M, Zheng Y, Hirashima M, Suda T, Morita Y, Ooehara J, Ema H, Fong GH, Shibuya M (2008) VEGFR1 tyrosine kinase signaling promotes lymphangiogenesis as well as angiogenesis indirectly via macrophage recruitment. Arterioscler Thromb Vasc Biol 28(4):658–664. doi: 10.1161/ATVBAHA.107.150433 CrossRefPubMedGoogle Scholar
  14. 14.
    Chen HX, Cleck JN (2009) Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol 6(8):465–477. doi: 10.1038/nrclinonc.2009.94 CrossRefPubMedGoogle Scholar
  15. 15.
    Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2(10):795–803. doi: 10.1038/nrc909 CrossRefPubMedGoogle Scholar
  16. 16.
    Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25(4):581–611. doi: 10.1210/er.2003-0027 CrossRefPubMedGoogle Scholar
  17. 17.
    Fischer C, Mazzone M, Jonckx B, Carmeliet P (2008) FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat Rev Cancer 8(12):942–956. doi: 10.1038/nrc2524 CrossRefPubMedGoogle Scholar
  18. 18.
    Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H, Scholz D, Acker T, DiPalma T, Dewerchin M, Noel A, Stalmans I, Barra A, Blacher S, VandenDriessche T, Ponten A, Eriksson U, Plate KH, Foidart JM, Schaper W, Charnock-Jones DS, Hicklin DJ, Herbert JM, Collen D, Persico MG (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7(5):575–583. doi: 10.1038/87904 CrossRefPubMedGoogle Scholar
  19. 19.
    Fischer C, Jonckx B, Mazzone M, Zacchigna S, Loges S, Pattarini L, Chorianopoulos E, Liesenborghs L, Koch M, De Mol M, Autiero M, Wyns S, Plaisance S, Moons L, van Rooijen N, Giacca M, Stassen JM, Dewerchin M, Collen D, Carmeliet P (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131(3):463–475. doi: 10.1016/j.cell.2007.08.038 CrossRefPubMedGoogle Scholar
  20. 20.
    Lahteenvuo JE, Lahteenvuo MT, Kivela A, Rosenlew C, Falkevall A, Klar J, Heikura T, Rissanen TT, Vahakangas E, Korpisalo P, Enholm B, Carmeliet P, Alitalo K, Eriksson U, Yla- Herttuala S (2009) Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanisms. Circulation 119(6):845–856. doi: 10.1161/CIRCULATIONAHA.108.816454 CrossRefPubMedGoogle Scholar
  21. 21.
    Hagberg CE, Falkevall A, Wang X, Larsson E, Huusko J, Nilsson I, van Meeteren LA, Samen E, Lu L, Vanwildemeersch M, Klar J, Genove G, Pietras K, Stone-Elander S, Claesson-Welsh L, Yla-Herttuala S, Lindahl P, Eriksson U (2010) Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464(7290):917–921. doi: 10.1038/nature08945 CrossRefPubMedGoogle Scholar
  22. 22.
    Gunningham SP, Currie MJ, Han C, Robinson BA, Scott PA, Harris AL, Fox SB (2001) VEGF-B expression in human primary breast cancers is associated with lymph node metastasis but not angiogenesis. J Pathol 193(3):325–332. doi: 10.1002/path.814 CrossRefPubMedGoogle Scholar
  23. 23.
    Gunningham SP, Currie MJ, Han C, Turner K, Scott PA, Robinson BA, Harris AL, Fox SB (2001) Vascular endothelial growth factor-B and vascular endothelial growth factor-C expression in renal cell carcinomas: regulation by the von Hippel-Lindau gene and hypoxia. Cancer Res 61(7):3206–3211PubMedGoogle Scholar
  24. 24.
    Hanrahan V, Currie MJ, Gunningham SP, Morrin HR, Scott PA, Robinson BA, Fox SB (2003) The angiogenic switch for vascular endothelial growth factor (VEGF)-A, VEGF-B, VEGF-C, and VEGF-D in the adenoma-carcinoma sequence during colorectal cancer progression. J Pathol 200(2):183–194. doi: 10.1002/path.1339 CrossRefPubMedGoogle Scholar
  25. 25.
    Tammela T, Zarkada G, Wallgard E, Murtomaki A, Suchting S, Wirzenius M, Waltari M, Hellstrom M, Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen P, Christofori G, Yla-Herttuala S, Shibuya M, Pytowski B, Eichmann A, Betsholtz C, Alitalo K (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network f ormation. Nature 454(7204):656–660. doi: 10.1038/nature07083 CrossRefPubMedGoogle Scholar
  26. 26.
    Baldwin ME, Halford MM, Roufail S, Williams RA, Hibbs ML, Grail D, Kubo H, Stacker SA, Achen MG (2005) Vascular endothelial growth factor D is dispensable for development of the lymphatic system. Mol Cell Biol 25(6):2441–2449. doi: 10.1128/MCB.25.6.2441-2449.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, Jeltsch M, Jackson DG, Talikka M, Rauvala H, Betsholtz C, Alitalo K (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5(1):74–80. doi: 10.1038/ni1013 CrossRefPubMedGoogle Scholar
  28. 28.
    Alitalo K, Tammela T, Petrova TV (2005) Lymphangiogenesis in development and human disease. Nature 438(7070):946–953. doi: 10.1038/nature04480 CrossRefPubMedGoogle Scholar
  29. 29.
    Kurahara H, Takao S, Maemura K, Shinchi H, Natsugoe S, Aikou T (2004) Impact of vascular endothelial growth factor-C and -D expression in human pancreatic cancer: its relationship to lymph node metastasis. Clin Cancer Res 10(24):8413–8420. doi: 10.1158/1078-0432.CCR-04-0379 CrossRefPubMedGoogle Scholar
  30. 30.
    Jiang HG, Gao M, Tang WP, Li FH, Cai QZ (2005) Expression and significance of VEGF, VEGF-C, and VEGF-D in papillary thyroid carcinoma. Ai Zheng 24(9):1136–1139PubMedGoogle Scholar
  31. 31.
    Lyttle DJ, Fraser KM, Fleming SB, Mercer AA, Robinson AJ (1994) Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus. J Virol 68(1):84–92PubMedPubMedCentralGoogle Scholar
  32. 32.
    Haig DM, Mercer AA (1998) Ovine diseases. Orf Vet Res 29(3–4):311–326PubMedGoogle Scholar
  33. 33.
    Rziha HJ, Henkel M, Cottone R, Meyer M, Dehio C, Buttner M (1999) Parapoxviruses: potential alternative vectors for directing the immune response in permissive and non- permissive hosts. J Biotechnol 73(2–3):235–242CrossRefPubMedGoogle Scholar
  34. 34.
    Tan ST, Blake GB, Chambers S (1991) Recurrent orf in an immunocompromised host. Br J Plast Surg 44(6):465–467CrossRefPubMedGoogle Scholar
  35. 35.
    Meyer M, Clauss M, Lepple-Wienhues A, Waltenberger J, Augustin HG, Ziche M, Lanz C, Buttner M, Rziha HJ, Dehio C (1999) A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J 18(2):363–374. doi: 10.1093/emboj/18.2.363 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ogawa S, Oku A, Sawano A, Yamaguchi S, Yazaki Y, Shibuya M (1998) A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J Biol Chem 273(47):31273–31282CrossRefPubMedGoogle Scholar
  37. 37.
    Wise LM, Veikkola T, Mercer AA, Savory LJ, Fleming SB, Caesar C, Vitali A, Makinen T, Alitalo K, Stacker SA (1999) Vascular endothelial growth factor (VEGF)-like protein from orf virus NZ2 binds to VEGFR2 and neuropilin-1. Proc Natl Acad Sci USA 96(6):3071–3076CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Cebe-Suarez S, Grunewald FS, Jaussi R, Li X, Claesson-Welsh L, Spillmann D, Mercer AA, Prota AE, Ballmer-Hofer K (2008) Orf virus VEGF-E NZ2 promotes paracellular NRP- 1/VEGFR-2 coreceptor assembly via the peptide RPPR. FASEB J Off Publ Fed Am Soc Exp Biol 22(8):3078–3086. doi: 10.1096/fj.08-107219 Google Scholar
  39. 39.
    Cudmore M, Ahmad S, Al-Ani B, Hewett P, Ahmed S, Ahmed A (2006) VEGF-E activates endothelial nitric oxide synthase to induce angiogenesis via cGMP and PKG-independent pathways. Biochem Biophys Res Commun 345(4):1275–1282. doi: 10.1016/j.bbrc.2006.04.031 CrossRefPubMedGoogle Scholar
  40. 40.
    Kiba A, Sagara H, Hara T, Shibuya M (2003) VEGFR-2-specific ligand VEGF-E induces non-edematous hyper-vascularization in mice. Biochem Biophys Res Commun 301(2):371–377CrossRefPubMedGoogle Scholar
  41. 41.
    Hanahan D (1985) Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 315(6015):115–122CrossRefPubMedGoogle Scholar
  42. 42.
    Labosky PA, Barlow DP, Hogan BL (1994) Embryonic germ cell lines and their derivation from mouse primordial germ cells. Ciba Found Symp 182:157–168 discussion 168–178 PubMedGoogle Scholar
  43. 43.
    Compagni A, Wilgenbus P, Impagnatiello MA, Cotten M, Christofori G (2000) Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Res 60(24):7163–7169PubMedGoogle Scholar
  44. 44.
    Gannon G, Mandriota SJ, Cui L, Baetens D, Pepper MS, Christofori G (2002) Overexpression of vascular endothelial growth factor-A165 enhances tumor angiogenesis but not metastasis during beta-cell carcinogenesis. Cancer Res 62(2):603–608PubMedGoogle Scholar
  45. 45.
    Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM (2003) Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol 163(5):1801–1815. doi: 10.1016/S0002-9440(10)63540-7 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D (1999) Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284(5415):808–812CrossRefPubMedGoogle Scholar
  47. 47.
    Folkman J, Watson K, Ingber D, Hanahan D (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339(6219):58–61. doi: 10.1038/339058a0 CrossRefPubMedGoogle Scholar
  48. 48.
    Ohzato H, Gotoh M, Monden M, Dono K, Kanai T, Mori T (1991) Improvement in islet yield from a cold-preserved pancreas by pancreatic ductal collagenase distention at the time of harvesting. Transplantation 51(3):566–570CrossRefPubMedGoogle Scholar
  49. 49.
    Innocenti M, Tenca P, Frittoli E, Faretta M, Tocchetti A, Di Fiore PP, Scita G (2002) Mechanisms through which Sos-1 coordinates the activation of Ras and Rac. J Cell Biol 156(1):125–136. doi: 10.1083/jcb.200108035 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Wassef M, Blei F, Adams D, Alomari A, Baselga E, Berenstein A, Burrows P, Frieden IJ, Garzon MC, Lopez-Gutierrez JC, Lord DJ, Mitchel S, Powell J, Prendiville J, Vikkula M, Board I, Scientific C (2015) Vascular anomalies classification: recommendations from the International Society for the Study of Vascular Anomalies. Pediatrics 136(1):e203–e214. doi: 10.1542/peds.2014-3673 CrossRefPubMedGoogle Scholar
  51. 51.
    Betsholtz C, Karlsson L, Lindahl P (2001) Developmental roles of platelet-derived growth factors. BioEssays 23(6):494–507. doi: 10.1002/bies.1069 CrossRefPubMedGoogle Scholar
  52. 52.
    Guo P, Hu B, Gu W, Xu L, Wang D, Huang HJ, Cavenee WK, Cheng SY (2003) Platelet- derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am J Pathol 162(4):1083–1093. doi: 10.1016/S0002-9440(10)63905-3 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NP, Risau W, Ullrich A (1993) High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72(6):835–846CrossRefPubMedGoogle Scholar
  54. 54.
    Quinn TP, Peters KG, De Vries C, Ferrara N, Williams LT (1993) Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc Natl Acad Sci USA 90(16):7533–7537CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A (1994) Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367(6463):576–579. doi: 10.1038/367576a0 CrossRefPubMedGoogle Scholar
  56. 56.
    Koch S, Claesson-Welsh L (2012) Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2(7):a006502. doi: 10.1101/cshperspect.a006502 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Bates DO, Harper SJ (2002) Regulation of vascular permeability by vascular endothelial growth factors. Vasc Pharmacol 39(4–5):225–237CrossRefGoogle Scholar
  58. 58.
    Wise LM, Ueda N, Dryden NH, Fleming SB, Caesar C, Roufail S, Achen MG, Stacker SA, Mercer AA (2003) Viral vascular endothelial growth factors vary extensively in amino acid sequence, receptor-binding specificities, and the ability to induce vascular permeability yet are uniformly active mitogens. J Biol Chem 278(39):38004–38014. doi: 10.1074/jbc.M301194200 CrossRefPubMedGoogle Scholar
  59. 59.
    Shu X, Wu W, Mosteller RD, Broek D (2002) Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases. Mol Cell Biol 22(22):7758–7768CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Crnic I, Strittmatter K, Cavallaro U, Kopfstein L, Jussila L, Alitalo K, Christofori G (2004) Loss of neural cell adhesion molecule induces tumor metastasis by up-regulating lymphangiogenesis. Cancer Res 64(23):8630–8638. doi: 10.1158/0008-5472.CAN-04-2523 CrossRefPubMedGoogle Scholar
  61. 61.
    Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R, Jackson DG, Orci L, Alitalo K, Christofori G, Pepper MS (2001) Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20(4):672–682. doi: 10.1093/emboj/20.4.672 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kopfstein L, Veikkola T, Djonov VG, Baeriswyl V, Schomber T, Strittmatter K, Stacker SA, Achen MG, Alitalo K, Christofori G (2007) Distinct roles of vascular endothelial growth factor-D in lymphangiogenesis and metastasis. Am J Pathol 170(4):1348–1361. doi: 10.2353/ajpath.2007.060835 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    De Palma M, Murdoch C, Venneri MA, Naldini L, Lewis CE (2007) Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol 28(12):519–524. doi: 10.1016/j.it.2007.09.004 CrossRefPubMedGoogle Scholar
  64. 64.
    Chung AS, Lee J, Ferrara N (2010) Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 10(7):505–514. doi: 10.1038/nrc2868 CrossRefPubMedGoogle Scholar
  65. 65.
    Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, Chimenti S, Landsman L, Abramovitch R, Keshet E (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124(1):175–189. doi: 10.1016/j.cell.2005.10.036 CrossRefPubMedGoogle Scholar
  66. 66.
    Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2):263–266. doi: 10.1016/j.cell.2006.01.007 CrossRefPubMedGoogle Scholar
  67. 67.
    Ji Y, Chen S, Li K, Li L, Xu C, Xiang B (2014) Signaling pathways in the development of infantile hemangioma. J Hematol Oncol 7:13. doi: 10.1186/1756-8722-7-13 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Jinnin M, Medici D, Park L, Limaye N, Liu Y, Boscolo E, Bischoff J, Vikkula M, Boye E, Olsen BR (2008) Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nat Med 14(11):1236–1246. doi: 10.1038/nm.1877 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Picard A, Boscolo E, Khan ZA, Bartch TC, Mulliken JB, Vazquez MP, Bischoff J (2008) IGF-2 and FLT-1/VEGF-R1 mRNA levels reveal distinctions and similarities between congenital and common infantile hemangioma. Pediatr Res 63(3):263–267. doi: 10.1203/PDR.0b013e318163a243 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Uutela M, Wirzenius M, Paavonen K, Rajantie I, He Y, Karpanen T, Lohela M, Wiig H, Salven P, Pajusola K, Eriksson U, Alitalo K (2004) PDGF-D induces macrophage recruitment, increased interstitial pressure, and blood vessel maturation during angiogenesis. Blood 104(10):3198–3204. doi: 10.1182/blood-2004-04-1485 CrossRefPubMedGoogle Scholar
  71. 71.
    Schomber T, Kopfstein L, Djonov V, Albrecht I, Baeriswyl V, Strittmatter K, Christofori G (2007) Placental growth factor-1 attenuates vascular endothelial growth factor-A-dependent tumor angiogenesis during beta cell carcinogenesis. Cancer Res 67(22):10840–10848. doi: 10.1158/0008-5472.CAN-07-1034 CrossRefPubMedGoogle Scholar
  72. 72.
    Albrecht I, Kopfstein L, Strittmatter K, Schomber T, Falkevall A, Hagberg CE, Lorentz P, Jeltsch M, Alitalo K, Eriksson U, Christofori G, Pietras K (2010) Suppressive effects of vascular endothelial growth factor-B on tumor growth in a mouse model of pancreatic neuroendocrine tumorigenesis. PLoS One 5(11):e14109. doi: 10.1371/journal.pone.0014109 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Marcellini M, De Luca N, Riccioni T, Ciucci A, Orecchia A, Lacal PM, Ruffini F, Pesce M, Cianfarani F, Zambruno G, Orlandi A, Failla CM (2006) Increased melanoma growth and metastasis spreading in mice overexpressing placenta growth factor. Am J Pathol 169(2):643–654. doi: 10.2353/ajpath.2006.051041 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Stacker SA, Stenvers K, Caesar C, Vitali A, Domagala T, Nice E, Roufail S, Simpson RJ, Moritz R, Karpanen T, Alitalo K, Achen MG (1999) Biosynthesis of vascular endothelial growth factor-D involves proteolytic processing which generates non-covalent homodimers. J Biol Chem 274(45):32127–32136CrossRefPubMedGoogle Scholar
  75. 75.
    Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K, Breitman M, Alitalo K (1998) Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282(5390):946–949CrossRefPubMedGoogle Scholar
  76. 76.
    Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M, Alitalo K (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92(8):3566–3570CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Partanen TA, Alitalo K, Miettinen M (1999) Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer 86(11):2406–2412CrossRefPubMedGoogle Scholar
  78. 78.
    Alam A, Herault JP, Barron P, Favier B, Fons P, Delesque-Touchard N, Senegas I, Laboudie P, Bonnin J, Cassan C, Savi P, Ruggeri B, Carmeliet P, Bono F, Herbert JM (2004) Heterodimerization with vascular endothelial growth factor receptor-2 (VEGFR-2) is necessary for VEGFR-3 activity. Biochem Biophys Res Commun 324(2):909–915. doi: 10.1016/j.bbrc.2004.08.237 CrossRefPubMedGoogle Scholar
  79. 79.
    Nilsson I, Bahram F, Li X, Gualandi L, Koch S, Jarvius M, Soderberg O, Anisimov A, Kholova I, Pytowski B, Baldwin M, Yla-Herttuala S, Alitalo K, Kreuger J, Claesson-Welsh L (2010) VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J 29(8):1377–1388. doi: 10.1038/emboj.2010.30 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Inoue M, Hager JH, Ferrara N, Gerber HP, Hanahan D (2002) VEGF-A has a critical, non redundant role in angiogenic switching and pancreatic beta cell carcinogenesis. Cancer Cell 1(2):193–202CrossRefPubMedGoogle Scholar
  81. 81.
    Jimenez X, Lu D, Brennan L, Persaud K, Liu M, Miao H, Witte L, Zhu Z (2005) A recombinant, fully human, bispecific antibody neutralizes the biological activities mediated by both vascular endothelial growth factor receptors 2 and 3. Mol Cancer Ther 4(3):427–434. doi: 10.1158/1535-7163.MCT-04-0261 PubMedGoogle Scholar
  82. 82.
    Pytowski B, Goldman J, Persaud K, Wu Y, Witte L, Hicklin DJ, Skobe M, Boardman KC, Swartz MA (2005) Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody. J Natl Cancer Inst 97(1):14–21. doi: 10.1093/jnci/dji003 CrossRefPubMedGoogle Scholar
  83. 83.
    Orleth A, Mamot C, Rochlitz C, Ritschard R, Alitalo K, Christofori G, Wicki A (2016) Simultaneous targeting of VEGF-receptors 2 and 3 with immunoliposomes enhances therapeutic efficacy. J Drug Target 24(1):80–89. doi: 10.3109/1061186X.2015.1056189 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Ernesta Fagiani
    • 1
    Email author
  • Pascal Lorentz
    • 1
  • Ruben Bill
    • 1
  • Kirusigan Pavotbawan
    • 1
  • Lucie Kopfstein
    • 1
  • Gerhard Christofori
    • 1
  1. 1.Department of BiomedicineUniversity of BaselBaselSwitzerland

Personalised recommendations