, Volume 18, Issue 1, pp 47–68 | Cite as

Segregation of late outgrowth endothelial cells into functional endothelial CD34− and progenitor-like CD34+ cell populations

  • Cristina Ferreras
  • Claire L. Cole
  • Katharina Urban
  • Gordon C. Jayson
  • Egle Avizienyte
Original Paper


Late outgrowth endothelial cells (OECs) that originate from peripheral blood mononuclear cells ex vivo have phenotypic and functional properties of mature endothelial cells. Given the potential therapeutic applications of OECs, understanding their biology is crucial. We have identified two distinct OEC populations based on differential expression of the cell surface marker CD34. OEC colonies lacked CD34 expression (CD34−), expressed CD34 in the majority of cells (CD34+), or showed a mixed expression pattern within a colony (CD34+/−). CD34+ and CD34− OECs were negative for hematopoietic cell marker CD45 and expressed the endothelial cell surface markers CD31, CD146, CD105, and VEGFR-2. Functionally CD34− and CD34+ OECs exhibited strikingly distinct behaviors. CD34− OECs, unlike CD34+ OECs, were capable of sprouting, formed tubes, and responded to angiogenic growth factors in vitro. In vivo, CD34− OECs formed endothelial tubes, while CD34+ OECs, despite being unable to form tubes, promoted infiltration of murine vasculature. Global gene expression profiling in CD34− and CD34+ OECs identified functional importance of the MMP-1/PAR-1 pathway in CD34− OECs. MMP-1 stimulated the expression of VEGFR-2, neuropilin-1, neuropilin-2, and CXCR4 and activated ERK1/2, whereas down-regulation of PAR-1 in CD34− OECs resulted in impaired angiogenic responses in vitro and reduced VEGFR-2 levels. In contrast, the CD34+ OEC colonies expressed high levels of the progenitor cell marker ALDH, which was absent in CD34− OECs. In summary, we show that OECs can be classified into functionally mature endothelial cells (CD34− OECs) that depend on the MMP-1/PAR-1 pathway and progenitor-like angiogenesis-promoting cells (CD34+ OECs).


Late outgrowth endothelial cells Peripheral blood CD34 Angiogenesis MMP-1 PAR-1 ALDH 



The authors are grateful to Cancer Research, UK, which funded this work (C2075/A11994).

Conflict of interest

The authors declare no competing financial interests.


  1. 1.
    Fadini GP, Losordo D, Dimmeler S (2012) Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res 110:624–637PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Hirschi KK, Ingram DA, Yoder MC (2008) Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol 28:1584–1595PubMedCrossRefGoogle Scholar
  3. 3.
    Ingram DA, Mead LE, Tanaka H et al (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760PubMedCrossRefGoogle Scholar
  4. 4.
    Yoder MC, Mead LE, Prater D et al (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Roncalli JG, Tongers J, Renault MA, Losordo DW (2008) Endothelial progenitor cells in regenerative medicine and cancer: a decade of research. Trends Biotechnol 26:276–283PubMedCrossRefGoogle Scholar
  6. 6.
    Rouhl RP, van Oostenbrugge RJ, Damoiseaux J et al (2008) Endothelial progenitor cell research in stroke: a potential shift in pathophysiological and therapeutical concepts. Stroke 39:2158–2165PubMedCrossRefGoogle Scholar
  7. 7.
    Dudek AZ (2010) Endothelial lineage cell as a vehicle for systemic delivery of cancer gene therapy. Transl Res 156:136–146PubMedCrossRefGoogle Scholar
  8. 8.
    Bodempudi V, Ohlfest JR, Terai K et al (2010) Blood outgrowth endothelial cell-based systemic delivery of antiangiogenic gene therapy for solid tumours. Cancer Gene Ther 17:855–863PubMedCrossRefGoogle Scholar
  9. 9.
    Sieveking DP, Buckle A, Celermajer DS, Ng MK (2008) Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay. J Am Coll Cardiol 51:660–668PubMedCrossRefGoogle Scholar
  10. 10.
    Bieback K, Vinci M, Elvers-Hornung S et al (2013) Recruitment of human cord blood-derived endothelial colony-forming cells to sites of tumour angiogenesis. Cytotherapy 15:1–14CrossRefGoogle Scholar
  11. 11.
    Martin-Ramirez J, Hofman M, van den Biggelaar M et al (2012) Establishment of outgrowth endothelial cells from peripheral blood. Nat Protoc 7:1709–1715PubMedCrossRefGoogle Scholar
  12. 12.
    Cole CL, Hansen SU, Baráth M et al (2010) Synthetic heparan sulfate oligosaccharides inhibit endothelial cell functions essential for angiogenesis. PLoS ONE 5:e11644PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Ferreras C, Rushton G, Cole CL et al (2012) Endothelial heparan sulfate 6-O-sulfation levels regulate angiogenic responses of endothelial cells to fibroblast growth factor 2 and vascular endothelial growth factor. J Biol Chem 287:36132–36146PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Albig AR, Schiemann WP (2005) Identification and characterization of regulator of G protein signaling 4 (RGS4) as a novel inhibitor of tubulogenesis: RGS4 inhibits mitogen-activated protein kinases and vascular endothelial growth factor signaling. Mol Biol Cell 16:609–625PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Goerge T, Barg A, Schnaeker EM et al (2006) Tumour-derived matrix metalloproteinase-1 targets endothelial proteinase-activated receptor 1 promoting endothelial cell activation. Cancer Res 66:7766–7774PubMedCrossRefGoogle Scholar
  16. 16.
    Boncela J, Przygodzka P, Wyroba E et al (2013) Secretion of SerpinB2 from endothelial cells activated with inflammatory stimuli. Exp Cell Res 319:1213–1219PubMedCrossRefGoogle Scholar
  17. 17.
    Sato Y, Okamura K, Morimoto A et al (1993) Indispensable role of tissue-type plasminogen activator in growth factor-dependent tube formation of human microvascular endothelial cells in vitro. Exp Cell Res 204:223–229PubMedCrossRefGoogle Scholar
  18. 18.
    Kroon ME, Koolwijk P, van der Vecht B, van Hinsbergh VW (2000) Urokinase receptor expression on human microvascular endothelial cells is increased by hypoxia: implications for capillary-like tube formation in a fibrin matrix. Blood 96:2775–2783PubMedGoogle Scholar
  19. 19.
    Krneta J, Kroll J, Alves F et al (2006) Dissociation of angiogenesis and tumourigenesis in follistatin- and activin-expressing tumours. Cancer Res 66:5686–5695PubMedCrossRefGoogle Scholar
  20. 20.
    Schreiber AB, Winkler ME, Derynck R (1986) Transforming growth factor-alpha: a more potent angiogenic mediator than epidermal growth factor. Science 232:1250–1253PubMedCrossRefGoogle Scholar
  21. 21.
    Fantin A, Vieira JM, Plein A et al (2013) NRP1 acts cell autonomously in endothelium to promote tip cell function during sprouting angiogenesis. Blood 121(12):2352–2362PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Favier B, Alam A, Barron P et al (2006) Neuropilin-2 interacts with VEGFR-2 and VEGFR-3 and promotes human endothelial cell survival and migration. Blood 108(4):1243–1250PubMedCrossRefGoogle Scholar
  23. 23.
    Austin KM, Covic L, Kuliopulos A (2013) Matrix metalloproteases and PAR-1 activation. Blood 121:431–439PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Smadja DM, Bieche I, Uzan G et al (2005) PAR-1 activation on human late endothelial progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. Arterioscler Thromb Vasc Biol 25:2321–2327PubMedCrossRefGoogle Scholar
  25. 25.
    Basire A, Sabatier F, Ravet S et al (2006) High urokinase expression contributes to the angiogenic properties of endothelial cells derived from circulating progenitors. Thromb Haemost 95:678–688PubMedGoogle Scholar
  26. 26.
    Varani J, Perone P, Warner RL et al (2008) Vascular tube formation on matrix metalloproteinase-1-damaged collagen. Br J Cancer 98:1646–1652PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Mazor R, Alsaigh T, Shaked H et al (2013) Matrix metalloproteinase-1-mediated up-regulation of vascular endothelial growth factor-2 in endothelial cells. J Biol Chem 288:598–607PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Jiang A, Pan W, Milbauer LC et al (2007) A practical question based on cross-platform microarray data normalization: are OECS more like large vessel or microvascular endothelial cells or neither of them? J Bioinform Comput Biol 5:875–893PubMedCrossRefGoogle Scholar
  29. 29.
    Urbich C, Dimmeler S (2004) Endothelial progenitor cells functional characterization. Trends Cardiovasc Med 14:318–322PubMedCrossRefGoogle Scholar
  30. 30.
    Khodarev NN, Yu J, Labay E et al (2003) Tumour-endothelium interactions in co-culture: coordinated changes of gene expression profiles and phenotypic properties of endothelial cells. J Cell Sci 116:1013–1022PubMedCrossRefGoogle Scholar
  31. 31.
    Wang Z, Kong D, Banerjee S et al (2007) Down-regulation of platelet-derived growth factor-D inhibits cell growth and angiogenesis through inactivation of Notch-1 and nuclear factor-kappaB signaling. Cancer Res 67:11377–11385PubMedCrossRefGoogle Scholar
  32. 32.
    Weber KS, Nelson PJ, Gröne HJ et al (1999) Expression of CCR2 by endothelial cells: implications for MCP-1 mediated wound injury repair and in vivo inflammatory activation of endothelium. Arterioscler Thromb Vasc Biol 19:2085–2093PubMedCrossRefGoogle Scholar
  33. 33.
    Kozian DH, Ziche M, Augustin HG (1997) The activin-binding protein follistatin regulates autocrine endothelial cell activity and induces angiogenesis. Lab Invest 76:267–276PubMedGoogle Scholar
  34. 34.
    Timmermans F, Plum J, Yoder MC et al (2008) Endothelial progenitor cells: identity defined? J Cell Mol Med 13:87–102CrossRefGoogle Scholar
  35. 35.
    Masuda H, Alev C, Akimaru H et al (2011) Methodological development of a clonogenic assay to determine endothelial progenitor cell potential. Circ Res 109:20–37PubMedCrossRefGoogle Scholar
  36. 36.
    Gunetti M, Noghero A, Molla F et al (2011) Ex vivo-expanded bone marrow cd34(+) for acute myocardial infarction treatment: in vitro and in vivo studies. Cytotherapy 13:1140–1152PubMedCrossRefGoogle Scholar
  37. 37.
    Tura O, Skinner EM, Barclay GR et al (2013) Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow. Stem Cells 31:338–348PubMedCrossRefGoogle Scholar
  38. 38.
    Ingram DA, Mead LE, Moore DB et al (2005) Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood 105:2783–2786PubMedCrossRefGoogle Scholar
  39. 39.
    de la Puente P, Muz B, Azab F et al (2013) Cell trafficking of endothelial progenitor cells in tumour progression. Clin Cancer Res 19:3360–336839PubMedCrossRefGoogle Scholar
  40. 40.
    Rancourt C, Robertson MW 3rd, Wang M et al (1998) Endothelial cell vehicles for delivery of cytotoxic genes as a gene therapy approach for carcinoma of the ovary. Clin Cancer Res 4:265–270PubMedGoogle Scholar
  41. 41.
    Dudek AZ, Bodempudi V, Welsh BW et al (2007) Systemic inhibition of tumour angiogenesis by endothelial cell-based gene therapy. Br J Cancer 97:513–522PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Cristina Ferreras
    • 1
  • Claire L. Cole
    • 1
  • Katharina Urban
    • 2
  • Gordon C. Jayson
    • 1
  • Egle Avizienyte
    • 1
  1. 1.Institute of Cancer Sciences, Faculty of Medical and Human SciencesThe University of ManchesterManchesterUK
  2. 2.Department of Applied Tumour Biology, Institute of PathologyUniversity of HeidelbergHeidelbergGermany

Personalised recommendations