, Volume 17, Issue 4, pp 779–804 | Cite as

The chicken chorioallantoic membrane model in biology, medicine and bioengineering

Review Paper


The chicken chorioallantoic membrane (CAM) is a simple, highly vascularized extraembryonic membrane, which performs multiple functions during embryonic development, including but not restricted to gas exchange. Over the last two decades, interest in the CAM as a robust experimental platform to study blood vessels has been shared by specialists working in bioengineering, development, morphology, biochemistry, transplant biology, cancer research and drug development. The tissue composition and accessibility of the CAM for experimental manipulation, makes it an attractive preclinical in vivo model for drug screening and/or for studies of vascular growth. In this article we provide a detailed review of the use of the CAM to study vascular biology and response of blood vessels to a variety of agonists. We also present distinct cultivation protocols discussing their advantages and limitations and provide a summarized update on the use of the CAM in vascular imaging, drug delivery, pharmacokinetics and toxicology.


Angiogenesis Anti-vascular therapies Chicken chorioallantoic membrane Bioengineering Lymphangiogenesis Organ transplantation Physical forces Tumor vasculature 







Aminolevulinic acid




Age-related macular degeneration




Chicken chorioallantoic membrane


Subfoveal choroidal neovascularization


Drug delivery systems




Endothelial cells


Extracellular matrix


Growth factor


Hepatocyte growth factor


Langerhans cells


Lipid factor


Microbeam radiation


Polypoidal choroidal vasculopathy


Photodynamic diagnosis


Polyethylene glycol




Protoporphyrin IX


Prospero homeobox protein 1




Smooth muscle actin


Vascular disrupting agents


Vasculogenic mimicry


Yolk sac membrane


  1. 1.
    Rous P, Murphy JB (1911) Tumor implantations in the developing embryo. J Am Med Assoc 56:741Google Scholar
  2. 2.
    Murphy JB (1912) Transplantability of malignant tumors to embryos of a foreign species. J Am Med Assoc 59:874Google Scholar
  3. 3.
    Goodpasture EW, Woodruff AM, Buddingh GJ (1931) The cultivation of vaccine and other viruses in the chorioallantoic membrane of chick embryos. Science 74(1919):371–372PubMedGoogle Scholar
  4. 4.
    Morrow G, Syverton JT, Stiles WW, Berry GP (1938) The growth of leptospira icterohemorrhagiae on the chorioallantoic membrane of the chick embryo. Science 88(2286):384–385PubMedGoogle Scholar
  5. 5.
    Moore M (1942) The chorioallantoic membrane of chick embryos and its response to inoculation with some mycobacteria. Am J Pathol 18(5):827–847PubMedPubMedCentralGoogle Scholar
  6. 6.
    Ribatti D, Vacca A, Roncali L, Dammacco F (2000) The chick embryo chorioallantoic membrane as a model for in vivo research on anti-angiogenesis. Curr Pharm Biotechnol 1(1):73–82PubMedGoogle Scholar
  7. 7.
    Ribatti D (2012) Chicken chorioallantoic membrane angiogenesis model. Methods Mol Biol 843:47–57PubMedGoogle Scholar
  8. 8.
    Auerbach R, Kubai L, Knighton D, Folkman J (1974) A simple procedure for the long-term cultivation of chicken embryos. Dev Biol 41(2):391–394PubMedGoogle Scholar
  9. 9.
    Nguyen M, Shing Y, Folkman J (1994) Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc Res 47(1):31–40PubMedGoogle Scholar
  10. 10.
    Vazquez F, Hastings G, Ortega MA, Lane TF, Oikemus S, Lombardo M, Iruela-Arispe ML (1999) METH-1, a human ortholog of ADAMTS-1, and METH-2 are members of a new family of proteins with angio-inhibitory activity. J Biol Chem 274(33):23349–23357PubMedGoogle Scholar
  11. 11.
    Hamburger V, Hamilton H (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92PubMedGoogle Scholar
  12. 12.
    Papoutsi M, Tomarev SI, Eichmann A, Prols F, Christ B, Wilting J (2001) Endogenous origin of the lymphatics in the avian chorioallantoic membrane. Dev Dyn 222(2):238–251PubMedGoogle Scholar
  13. 13.
    Ribatti D (2010) The chick embryo chorioallantoic membrane in the study of angiogenesis and metastasis. Springer Science & Business Media, BerlinGoogle Scholar
  14. 14.
    Dohle DS, Pasa SD, Gustmann S, Laub M, Wissler JH, Jennissen HP, Dunker N (2009) Chick ex ovo culture and ex ovo CAM assay: how it really works. JoVE 33. doi:10.3791/1620
  15. 15.
    Burnet FM (1933) A virus disease of the canary of the fowl-pox group. J Pathol Bacteriol 37:107–122Google Scholar
  16. 16.
    Dagg CP, Karnofsky DA, Roddy J (1956) Growth of transplantable human tumors in the chick embryo and hatched chick. Cancer Res 16(7):589–594PubMedGoogle Scholar
  17. 17.
    Zwilling E (1959) A modified chorioallantoic grafting procedure. Transplant Bull 6(1):115–116PubMedGoogle Scholar
  18. 18.
    Nowak-Sliwinska P, van Beijnum JR, van Berkel M, van den Bergh H, Griffioen AW (2010) Vascular regrowth following photodynamic therapy in the chicken embryo chorioallantoic membrane. Angiogenesis 13(4):281–292PubMedPubMedCentralGoogle Scholar
  19. 19.
    Nowak-Sliwinska P, Weiss A, Beijnum JR, Wong TJ, Ballini JP, Lovisa B, van den Bergh H, Griffioen AW (2012) Angiostatic kinase inhibitors to sustain photodynamic angio-occlusion. J Cell Mol Med 16(7):1553–1562PubMedGoogle Scholar
  20. 20.
    Lange N, Ballini JP, Wagnieres G, van den Bergh H (2001) A new drug-screening procedure for photosensitizing agents used in photodynamic therapy for CNV. Invest Ophthalmol Vis Sci 42(1):38–46PubMedGoogle Scholar
  21. 21.
    Abe C, Uto Y, Nakae T, Shinmoto Y, Sano K, Nakata H, Teraoka M, Endo Y, Maezawa H, Masunaga S, Nakata E, Hori H (2011) Evaluation of the in vivo radiosensitizing activity of etanidazole using tumor-bearing chick embryo. J Radiat Res 52(2):208–214PubMedGoogle Scholar
  22. 22.
    Kardamakis D, Hadjimichael C, Ginopoulos P, Papaioannou S (2004) Effects of paclitaxel in combination with ionizing radiation on angiogenesis in the chick embryo chorioallantoic membrane. A radiobiological study. Strahlenther Onkol 180(3):152–156PubMedGoogle Scholar
  23. 23.
    Wilson SM, Chambers AF (2004) Experimental metastasis assays in the chick embryo. Curr Prot Cell B iol Chapter 19:Unit 19 16Google Scholar
  24. 24.
    Borges J, Tegtmeier FT, Padron NT, Mueller MC, Lang EM, Stark GB (2003) Chorioallantoic membrane angiogenesis model for tissue engineering: a new twist on a classic model. Tissue Eng 9(3):441–450PubMedGoogle Scholar
  25. 25.
    Ponce ML, Kleinman HK (2003) The chick chorioallantoic membrane as an in vivo angiogenesis model. Curr Protoc Cell Biol 19.5.1:1–6Google Scholar
  26. 26.
    Ribatti D, Nico B, Vacca A, Presta M (2006) The gelatin sponge-chorioallantoic membrane assay. Nat Protoc 1(1):85–91PubMedGoogle Scholar
  27. 27.
    Ausprunk DH, Knighton DR, Folkman J (1974) Differentiation of vascular endothelium in the chick chorioallantois: a structural and autoradiographic study. Dev Biol 38(2):237–248PubMedGoogle Scholar
  28. 28.
    Kucera P, Burnand MB (1987) Routine teratogenicity test that uses chick embryos in vitro. Teratog Carcinog Mutagen 7(5):427–447PubMedGoogle Scholar
  29. 29.
    Samkoe KS, Clancy AA, Karotki A, Wilson BC, Cramb DT (2007) Complete blood vessel occlusion in the chick chorioallantoic membrane using two-photon excitation photodynamic therapy: implications for treatment of wet age-related macular degeneration. J Biomed Opt 12(3):034025PubMedGoogle Scholar
  30. 30.
    Deryugina EI, Quigley JP (2008) Chapter 2. Chick embryo chorioallantoic membrane models to quantify angiogenesis induced by inflammatory and tumor cells or purified effector molecules. Methods Enzymol 444:21–41PubMedPubMedCentralGoogle Scholar
  31. 31.
    Lei Y, Rahim M, Ng Q, Segura T (2011) Hyaluronic acid and fibrin hydrogels with concentrated DNA/PEI polyplexes for local gene delivery. J. Control. Release 153(3):255–261PubMedPubMedCentralGoogle Scholar
  32. 32.
    Weiss A, van Beijnum JR, Bonvin D, Jichlinski P, Dyson PJ, Griffioen AW, Nowak-Sliwinska P (2014) Low-dose angiostatic tyrosine kinase inhibitors improve photodynamic therapy for cancer: lack of vascular normalization. J Cell Mol Med 18(3):480–491PubMedGoogle Scholar
  33. 33.
    Grummer R (2006) Animal models in endometriosis research. Hum Reprod Update 12(5):641–649PubMedGoogle Scholar
  34. 34.
    Valdes TI, Kreutzer D, Moussy F (2002) The chick chorioallantoic membrane as a novel in vivo model for the testing of biomaterials. J Biomed Mater Res 62(2):273–282PubMedGoogle Scholar
  35. 35.
    Valdes TI, Klueh U, Kreutzer D, Moussy F (2003) Ex ova chick chorioallantoic membrane as a novel in vivo model for testing biosensors. J Biomed Mater Res Part A 67(1):215–223Google Scholar
  36. 36.
    Ribatti D, Nico B, Vacca A, Roncali L, Burri PH, Djonov V (2001) Chorioallantoic membrane capillary bed: a useful target for studying angiogenesis and anti-angiogenesis in vivo. Anat Rec 264(4):317–324PubMedGoogle Scholar
  37. 37.
    Reuwer AQ, Nowak-Sliwinska P, Mans LA, van der Loos CM, von der Thüsen JH, Twickler MT, Spek CA, Goffin V, Griffioen AW, Borensztajn KS (2012) Functional consequences of prolactin signaling in endothelial cells: a potential link with angiogenesis in pathophysiology? J Cell Mol Med 16(9):2035–2048PubMedGoogle Scholar
  38. 38.
    Gagliardi A, Collins DC (1993) Inhibition of angiogenesis by antiestrogens. Cancer Res 53(3):533–535PubMedGoogle Scholar
  39. 39.
    Adar Y, Stark M, Bram EE, Nowak-Sliwinska P, van den Bergh H, Szewczyk G, Sarna T, Skladanowski A, Griffioen AW, Assaraf YG (2012) Imidazoacridinone-dependent lysosomal photodestruction: a pharmacological Trojan horse approach to eradicate multidrug-resistant cancers. Cell Death Dis 3:e293PubMedPubMedCentralGoogle Scholar
  40. 40.
    Pipili-Synetos E, Kritikou S, Papadimitriou E, Athanassiadou A, Flordellis C, Maragoudakis ME (2000) Nitric oxide synthase expression, enzyme activity and NO production during angiogenesis in the chick chorioallantoic membrane. Brit J Pharmacol 129(1):207–213Google Scholar
  41. 41.
    Clavel CM, Paunescu E, Nowak-Sliwinska P, Griffioen AW, Scopelliti R, Dyson PJ (2014) Discovery of a highly tumor-selective organometallic ruthenium(II)-arene complex. J Med Chem 57(8):3546–3558PubMedGoogle Scholar
  42. 42.
    Nowak-Sliwinska P, van Beijnum JR, Casini A, Nazarov AA, Wagnières G, van den Bergh H, Dyson PJ, Griffioen AW (2011) Organometallic ruthenium(II) arene compounds with antiangiogenic activity. J Med Chem 54(11):3895–3902PubMedGoogle Scholar
  43. 43.
    Nazarov AA, Baquie M, Nowak-Sliwinska P, Zava O, van Beijnum JR, Groessl M, Chisholm DM, Ahmadi Z, McIndoe JS, Griffioen AW, van den Bergh H, Dyson PJ (2013) Synthesis and characterization of a new class of anti-angiogenic agents based on ruthenium clusters. Sci Rep 3:1485PubMedGoogle Scholar
  44. 44.
    Hu GF (1998) Neomycin inhibits angiogenin-induced angiogenesis. Proc Nat Acad Sci 95(17):9791–9795PubMedPubMedCentralGoogle Scholar
  45. 45.
    Nowak-Sliwinska P, Storto M, Cataudella T, Ballini JP, Gatz R, Giorgio M, van den Bergh H, Plyte S, Wagnières G (2012) Angiogenesis inhibition by the maleimide-based small molecule GNX-686. Microvasc Res 83:105–110PubMedGoogle Scholar
  46. 46.
    van Beijnum JR, Nowak-Sliwinska P, van den Boezem E, Hautvast P, Buurman WA, Griffioen AW (2013) Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1. Oncogene 17(32):363–374Google Scholar
  47. 47.
    Form DM, Auerbach R (1983) PGE2 and angiogenesis. Proc Soc Exp Biol Med 172(2):214–218PubMedGoogle Scholar
  48. 48.
    Chen Z, Milner TE, Srinivas S, Wang X, Malekafzali A, van Gemert MJ, Nelson JS (1997) Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Opt Lett 22(14):1119–1121PubMedGoogle Scholar
  49. 49.
    Tay SL, Heng PW, Chan LW (2012) The CAM-LDPI method: a novel platform for the assessment of drug absorption. J Pharm Pharmacol 64(4):517–529PubMedGoogle Scholar
  50. 50.
    Liu X, Zhang K, Huang Y, Kang JU (2011) Spectroscopic-speckle variance OCT for microvasculature detection and analysis. Biomed Opt Express 2(11):2995–3009PubMedPubMedCentralGoogle Scholar
  51. 51.
    Debefve E, Pegaz B, van den Bergh H, Wagnieres G, Lange N, Ballini JP (2008) Video monitoring of neovessel occlusion induced by photodynamic therapy with verteporfin (Visudyne), in the CAM model. Angiogenesis 11(3):235–243PubMedPubMedCentralGoogle Scholar
  52. 52.
    Chambers AF, Schmidt EE, MacDonald IC, Morris VL, Groom AC (1992) Early steps in hematogenous metastasis of B16F1 melanoma cells in chick embryos studied by high-resolution intravital videomicroscopy. J Natl Cancer Inst 84(10):797–803PubMedGoogle Scholar
  53. 53.
    Hlushchuk R, Ehrbar M, Reichmuth P, Heinimann N, Styp-Rekowska B, Escher R, Baum O, Lienemann P, Makanya A, Keshet E, Djonov V (2011) Decrease in VEGF expression induces intussusceptive vascular pruning. Arterioscler Thromb Vasc Biol 31(12):2836–2844PubMedGoogle Scholar
  54. 54.
    Chesnick IE, Fowler CB, Mason JT, Potter K (2011) Novel mineral contrast agent for magnetic resonance studies of bone implants grown on a chick chorioallantoic membrane. Magn Reson Imaging 29(9):1244–1254PubMedGoogle Scholar
  55. 55.
    Warnock G, Turtoi A, Blomme A, Bretin F, Bahri MA, Lemaire C, Libert LC, Seret AE, Luxen A, Castronovo V, Plenevaux AR (2013) In vivo PET/CT in a human glioblastoma chicken chorioallantoic membrane model: a new tool for oncology and radiotracer development. J Nucl Med 54(10):1782–1788PubMedGoogle Scholar
  56. 56.
    Miller WJ, Kayton ML, Patton A, O’Connor S, He M, Vu H, Baibakov G, Lorang D, Knezevic V, Kohn E, Alexander HR, Stirling D, Payvandi F, Muller GW, Libutti SK (2004) A novel technique for quantifying changes in vascular density, endothelial cell proliferation and protein expression in response to modulators of angiogenesis using the chick chorioallantoic membrane (CAM) assay. J. Transl. Med. 2(1):4PubMedPubMedCentralGoogle Scholar
  57. 57.
    Zeng L, Da X, Gu H, Yang D, Yang S, Xiang L (2007) High antinoise photoacoustic tomography based on a modified filtered backprojection algorithm with combination wavelet. Med Phys 34(2):556–563PubMedGoogle Scholar
  58. 58.
    Faez T, Skachkov I, Versluis M, Kooiman K, de Jong N (2012) In vivo characterization of ultrasound contrast agents: microbubble spectroscopy in a chicken embryo. Ultrasound Med Biol 38(9):1608–1617PubMedGoogle Scholar
  59. 59.
    Ford TN, Lim D, Mertz J (2012) Fast optically sectioned fluorescence HiLo endomicroscopy. J Biomed Opt 17(2):021105PubMedPubMedCentralGoogle Scholar
  60. 60.
    Kirchner LM, Schmidt SP, Gruber BS (1996) Quantitation of angiogenesis in the chick chorioallantoic membrane model using fractal analysis. Microvasc Res 51(1):2–14PubMedGoogle Scholar
  61. 61.
    Larger E, Marre M, Corvol P, Gasc JM (2004) Hyperglycemia-induced defects in angiogenesis in the chicken chorioallantoic membrane model. Diabetes 53(3):752–761PubMedGoogle Scholar
  62. 62.
    Blacher S, Davy L, Hlushchuk R, Larger E, Lamande N, Burri P, Corvol P, Djonov V, Foidart JM, Noel A (2005) Quantification of angiogenesis in the chicken chorioallantoic membrane (CAM). Image Anal Stereol 24:169–180Google Scholar
  63. 63.
    Doukas CN, Maglogiannis I, Chatziioannou AA (2008) Computer-supported angiogenesis quantification using image analysis and statistical averaging. IEEE Trans Inf Technol Biomed 12(5):650–657PubMedGoogle Scholar
  64. 64.
    Nowak-Sliwinska P, Ballini J-P, Wagnières G, van den Bergh H (2010) Processing of fluorescence angiograms for the quantification of vascular effects induced by anti-angiogenic agents in the CAM model. Microvasc Res 79(1):21–28PubMedGoogle Scholar
  65. 65.
    Parsons-Wingerter P, Lwai B, Yang MC, Elliott KE, Milaninia A, Redlitz A, Clark JI, Sage EH (1998) A novel assay of angiogenesis in the quail chorioallantoic membrane: stimulation by bFGF and inhibition by angiostatin according to fractal dimension and grid intersection. Microvasc Res 55(3):201–214PubMedGoogle Scholar
  66. 66.
    Doukas CN, Maglogiannis I, Chatziioannou A, Papapetropoulos A (2006) Automated angiogenesis quantification through advanced image processing techniques. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:2345–2348PubMedGoogle Scholar
  67. 67.
    Pyriochou A, Tsigkos S, Vassilakopoulos T, Cottin T, Zhou Z, Gourzoulidou E, Roussos C, Waldmann H, Giannis A, Papapetropoulos A (2007) Anti-angiogenic properties of a sulindac analogue. Brit. J. Pharmacol. 152(8):1207–1214Google Scholar
  68. 68.
    Strick DM, Waycaster RL, Montani JP, Gay WJ, Adair TH (1991) Morphometric measurements of chorioallantoic membrane vascularity: effects of hypoxia and hyperoxia. Am J Physiol 260(4 Pt 2):H1385–H1389PubMedGoogle Scholar
  69. 69.
    Vickerman MB, Keith PA, McKay TL, Gedeon DJ, Watanabe M, Montano M, Karunamuni G, Kaiser PK, Sears JE, Ebrahem Q, Ribita D, Hylton AG, Parsons-Wingerter P (2009) VESGEN 2D: automated, user-interactive software for quantification and mapping of angiogenic and lymphangiogenic trees and networks. Anat Rec (Hoboken, NJ: 2007) 292(3):320–332Google Scholar
  70. 70.
    Javerzat S, Franco M, Herbert J, Platonova N, Peille AL, Pantesco V, De Vos J, Assou S, Bicknell R, Bikfalvi A, Hagedorn M (2009) Correlating global gene regulation to angiogenesis in the developing chick extra-embryonic vascular system. PLoS ONE 4(11):e7856PubMedPubMedCentralGoogle Scholar
  71. 71.
    Ausprunk DH, Knighton DR, Folkman J (1975) Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois. Role of host and preexisting graft blood vessels. Am J Pathol 79(3):597–618PubMedPubMedCentralGoogle Scholar
  72. 72.
    Barrie R, Woltering EA, Hajarizadeh H, Mueller C, Ure T, Fletcher WS (1993) Inhibition of angiogenesis by somatostatin and somatostatin-like compounds is structurally dependent. J Surg Res 55(4):446–450PubMedGoogle Scholar
  73. 73.
    Deryugina EI, Quigley JP (2008) Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis. Histochem Cell Biol 130(6):1119–1130PubMedPubMedCentralGoogle Scholar
  74. 74.
    Tay SL, Heng PW, Chan LW (2012) The chick chorioallantoic membrane imaging method as a platform to evaluate vasoactivity and assess irritancy of compounds. J Pharm Pharmacol 64(8):1128–1137PubMedGoogle Scholar
  75. 75.
    DeFouw DO, Rizzo VJ, Steinfeld R, Feinberg RN (1989) Mapping of the microcirculation in the chick chorioallantoic membrane during normal angiogenesis. Microvasc Res 38(2):136–147PubMedGoogle Scholar
  76. 76.
    Dimitropoulou C, Malkusch W, Fait E, Maragoudakis ME, Konerding MA (1998) The vascular architecture of the chick chorioallantoic membrane: sequential quantitative evaluation using corrosion casting. Angiogenesis 2(3):255–263PubMedGoogle Scholar
  77. 77.
    Burton GJ, Palmer ME (1989) The chorioallantoic capillary plexus of the chicken egg: a microvascular corrosion casting study. Scanning Microsc 3(2):549–557PubMedGoogle Scholar
  78. 78.
    Seidlitz E, Korbie D, Marien L, Richardson M, Singh G (2004) Quantification of anti-angiogenesis using the capillaries of the chick chorioallantoic membrane demonstrates that the effect of human angiostatin is age-dependent. Microvasc Res 67(2):105–116PubMedGoogle Scholar
  79. 79.
    Parsons-Wingerter P, McKay TL, Leontiev D, Vickerman MB, Condrich TK, Dicorleto PE (2006) Lymphangiogenesis by blind-ended vessel sprouting is concurrent with hemangiogenesis by vascular splitting. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 288(3):233–247PubMedGoogle Scholar
  80. 80.
    Cimpean AM, Seclaman E, Ceausu R, Gaje P, Feflea S, Anghel A, Raica M, Ribatti D (2010) VEGF-A/HGF induce Prox-1 expression in the chick embryo chorioallantoic membrane lymphatic vasculature. Clin. Exp. Med. 10(3):169–172PubMedGoogle Scholar
  81. 81.
    Oh SJ, Jeltsch MM, Birkenhager R, McCarthy JE, Weich HA, Christ B, Alitalo K, Wilting J (1997) VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Develop Biol 188(1):96–109PubMedGoogle Scholar
  82. 82.
    Oliver G, Detmar M (2002) The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Gene Dev 16(7):773–783PubMedGoogle Scholar
  83. 83.
    Papoutsi M, Sleeman JP, Wilting J (2001) Interaction of rat tumor cells with blood vessels and lymphatics of the avian chorioallantoic membrane. Microsc Res Tech 55(2):100–107PubMedGoogle Scholar
  84. 84.
    Holzmann P, Niculescu-Morzsa E, Zwickl H, Halbwirth F, Pichler M, Matzner M, Gottsauner-Wolf F, Nehrer S (2010) Investigation of bone allografts representing different steps of the bone bank procedure using the CAM-model. Altex 27(2):97–103PubMedGoogle Scholar
  85. 85.
    Pink DB, Schulte W, Parseghian MH, Zijlstra A, Lewis JD (2012) Real-time visualization and quantitation of vascular permeability in vivo: implications for drug delivery. PLoS ONE 7(3):e33760PubMedPubMedCentralGoogle Scholar
  86. 86.
    Debefve E, Pegaz B, Ballini JP, Konan YN, van den Bergh H (2007) Combination therapy using aspirin-enhanced photodynamic selective drug delivery. Vasc Pharmacol 46(3):171–180Google Scholar
  87. 87.
    Rizzo V, DeFouw DO (1997) Microvascular permselectivity in the chick chorioallantoic membrane during endothelial cell senescence. Int J Microcirc Clin Exp 17(2):75–79PubMedGoogle Scholar
  88. 88.
    Rizzo V, Steinfeld R, Kyriakides C, DeFouw DO (1993) The microvascular unit of the 6-day chick chorioallantoic membrane: a fluorescent confocal microscopic and ultrastructural morphometric analysis of endothelial permselectivity. Microvasc Res 46(3):320–332PubMedGoogle Scholar
  89. 89.
    van der Horst EH, Frank BT, Chinn L, Coxon A, Li S, Polesso F, Slavin A, Ruefli-Brasse A, Wesche H (2008) The growth factor Midkine antagonizes VEGF signaling in vitro and in vivo. Neoplasia 10(4):340–347PubMedPubMedCentralGoogle Scholar
  90. 90.
    Flamme I, von Reutern M, Drexler HC, Syed-Ali S, Risau W (1995) Overexpression of vascular endothelial growth factor in the avian embryo induces hypervascularization and increased vascular permeability without alterations of embryonic pattern formation. Dev Biol 171(2):399–414PubMedGoogle Scholar
  91. 91.
    Stieger SM, Caskey CF, Adamson RH, Qin S, Curry FR, Wisner ER, Ferrara KW (2007) Enhancement of vascular permeability with low-frequency contrast-enhanced ultrasound in the chorioallantoic membrane model. Radiology 243(1):112–121PubMedGoogle Scholar
  92. 92.
    Murphy JB (1913) Transplantability of tissues to the embryo of foreign species : its bearing on questions of tissue specificity and tumor immunity. J Exp Med 17(4):482–493PubMedPubMedCentralGoogle Scholar
  93. 93.
    Subauste MC, Kupriyanova TA, Conn EM, Ardi VC, Quigley JP, Deryugina EI (2009) Evaluation of metastatic and angiogenic potentials of human colon carcinoma cells in chick embryo model systems. Clin Exp Metastas 26(8):1033–1047Google Scholar
  94. 94.
    Sys GM, Lapeire L, Stevens N, Favoreel H, Forsyth R, Bracke M, De Wever O (2013) The in ovo CAM-assay as a xenograft model for sarcoma. JoVE 77:e50522PubMedGoogle Scholar
  95. 95.
    Fergelot P, Bernhard JC, Soulet F, Kilarski WW, Leon C, Courtois N, Deminiere C, Herbert JM, Antczak P, Falciani F, Rioux-Leclercq N, Patard JJ, Ferriere JM, Ravaud A, Hagedorn M, Bikfalvi A (2013) The experimental renal cell carcinoma model in the chick embryo. Angiogenesis 16(1):181–194PubMedGoogle Scholar
  96. 96.
    Balke M, Neumann A, Kersting C, Agelopoulos K, Gebert C, Gosheger G, Buerger H, Hagedorn M (2010) Morphologic characterization of osteosarcoma growth on the chick chorioallantoic membrane. BMC 3:58Google Scholar
  97. 97.
    Ribatti D, Nico B, Cimpean AM, Raica M, Crivellato E, Ruggieri S, Vacca A (2013) B16-F10 melanoma cells contribute to the new formation of blood vessels in the chick embryo chorioallantoic membrane through vasculogenic mimicry. Clin. Exp. Med. 13(2):143–147PubMedGoogle Scholar
  98. 98.
    Ribatti D, De Falco G, Nico B, Ria R, Crivellato E, Vacca A (2003) In vivo time-course of the angiogenic response induced by multiple myeloma plasma cells in the chick embryo chorioallantoic membrane. J Anat 203(3):323–328PubMedPubMedCentralGoogle Scholar
  99. 99.
    Gronau S, Thess B, Riechelmann H, Fischer Y, Schmitt A, Schmitt M (2006) An autologous system for culturing head and neck squamous cell carcinomas for the assessment of cellular therapies on the chorioallantois membrane. Eur Arch Otorhinolaryngol 263(4):308–312PubMedGoogle Scholar
  100. 100.
    Auerbach R, Kubai L, Sidky Y (1976) Angiogenesis induction by tumors, embryonic tissues, and lymphocytes. Cancer Res 36(9 PT 2):3435–3440PubMedGoogle Scholar
  101. 101.
    Klagsbrun M, Knighton D, Folkman J (1976) Tumor angiogenesis activity in cells grown in tissue culture. Cancer Res 36(1):110–114PubMedGoogle Scholar
  102. 102.
    Marzullo A, Vacca A, Roncali L, Pollice L, Ribatti D (1998) Angiogenesis in hepatocellular carcinoma: an experimental study in the chick embryo chorioallantoic membrane. Int J Oncol 13(1):17–21PubMedGoogle Scholar
  103. 103.
    Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79(7):1157–1164PubMedGoogle Scholar
  104. 104.
    Kunzi-Rapp K, Kaskel P, Steiner R, Peter RU, Krahn G (2001) Increased blood levels of human S100 in melanoma chick embryo xenografts circulation. Pigment Cell Res 14(1):9–13PubMedGoogle Scholar
  105. 105.
    Ismail MS, Torsten U, Dressler C, Diederichs JE, Huske S, Weitzel H, Berlien HP (1999) Photodynamic therapy of malignant ovarian tumors cultivated on CAM. Laser Med. Sci. 14:91–96Google Scholar
  106. 106.
    Isachenko V, Mallmann P, Petrunkina AM, Rahimi G, Nawroth F, Hancke K, Felberbaum R, Genze F, Damjanoski I, Isachenko E (2012) Comparison of in vitro- and chorioallantoic membrane (CAM)-culture systems for cryopreserved medulla-contained human ovarian tissue. PLoS ONE 7(3):e32549PubMedPubMedCentralGoogle Scholar
  107. 107.
    Cimpean AM, Ribatti D, Raica M (2008) The chick embryo chorioallantoic membrane as a model to study tumor metastasis. Angiogenesis 11(4):311–319PubMedGoogle Scholar
  108. 108.
    Isachenko V, Orth I, Isachenko E, Mallmann P, Peters D, Schmidt T, Morgenstern B, Foth D, Hanstein B, Rahimi G (2013) Viability of human ovarian tissue confirmed 5 years after freezing with spontaneous ice-formation by autografting and chorio-allantoic membrane culture. Cryobiology 66(3):233–238PubMedGoogle Scholar
  109. 109.
    Isachenko V, Isachenko E, Mallmann P, Rahimi G (2013) Increasing follicular and stromal cell proliferation in cryopreserved human ovarian tissue after long-term precooling prior to freezing: in vitro versus chorioallantoic membrane (CAM) xenotransplantation. Cell Transplant 22(11):2053–2061PubMedGoogle Scholar
  110. 110.
    Deryugina EI, Zijlstra A, Partridge JJ, Kupriyanova TA, Madsen MA, Papagiannakopoulos T, Quigley JP (2005) Unexpected effect of matrix metalloproteinase down-regulation on vascular intravasation and metastasis of human fibrosarcoma cells selected in vivo for high rates of dissemination. Cancer Res 65(23):10959–10969PubMedGoogle Scholar
  111. 111.
    Lokman NA, Elder AS, Ricciardelli C, Oehler MK (2012) Chick chorioallantoic membrane (CAM) assay as an in vivo model to study the effect of newly identified molecules on ovarian cancer invasion and metastasis. Int J Mol Sci 13(8):9959–9970PubMedPubMedCentralGoogle Scholar
  112. 112.
    Becker J, Covelo-Fernandez A, von Bonin F, Kube D, Wilting J (2012) Specific tumor-stroma interactions of EBV-positive Burkitt’s lymphoma cells in the chick chorioallantoic membrane. Vascular Cell 4(1):3PubMedPubMedCentralGoogle Scholar
  113. 113.
    Lugassy C, Kleinman HK, Vernon SE, Welch DR, Barnhill RL (2007) C16 laminin peptide increases angiotropic extravascular migration of human melanoma cells in a shell-less chick chorioallantoic membrane assay. Brit J Dermatol 157(4):780–782Google Scholar
  114. 114.
    van den Bergh H, Ballini JP (2003) Photodynamic therapy: basic principle. In: FFaK S (ed) Lasers in ophthalmology—basic, diagnostic and surgical aspects. Kugler Publications, The Hague, pp 183–195Google Scholar
  115. 115.
    Weiss A, van den Bergh H, Griffioen AW, Nowak-Sliwinska P (1826) Angiogenesis inhibition for the improvement of photodynamic therapy: the revival of a promising idea. BBA Rev Cancer 1:53–70Google Scholar
  116. 116.
    Lim SH, Nowak-Sliwinska P, Kamarulzaman FA, van den Bergh H, Wagnieres G, Lee HB (2010) The neovessel occlusion efficacy of 15-hydroxypurpurin-7-lactone dimethyl ester induced with photodynamic therapy. Photochem Photobiol 86(2):397–402PubMedGoogle Scholar
  117. 117.
    Pegaz B, Debefve E, Ballini JP, Wagnieres G, Spaniol S, Albrecht V, Scheglmann DV, Nifantiev NE, van den Bergh H, Konan-Kouakou YN (2006) Photothrombic activity of m-THPC-loaded liposomal formulations: pre-clinical assessment on chick chorioallantoic membrane model. Eur J Pharm Sci 28(1–2):134–140PubMedGoogle Scholar
  118. 118.
    Pegaz B, Debefve E, Borle F, Ballini JP, Wagnieres G, Spaniol S, Albrecht V, Scheglmann D, Nifantiev NE, van den Bergh H, Konan YN (2005) Preclinical evaluation of a novel water-soluble chlorin E6 derivative (BLC 1010) as photosensitizer for the closure of the neovessels. Photochem Photobiol 81(6):1505–1510PubMedGoogle Scholar
  119. 119.
    Olivo M, Chin W (2006) Perylenequinones in photodynamic therapy: cellular versus vascular response. J Environ Pathol Toxicol Oncol 25(1–2):223–237PubMedGoogle Scholar
  120. 120.
    Hammer-Wilson MJ, Cao D, Kimel S, Berns MW (2002) Photodynamic parameters in the chick chorioallantoic membrane (CAM) bioassay for photosensitizers administered intraperitoneally (IP) into the chick embryo. Photochem Photobiol Sci 1(9):721–728PubMedGoogle Scholar
  121. 121.
    Piffaretti F, Novello AM, Kumar RS, Forte E, Paulou C, Nowak-Sliwinska P, van den Bergh H, Wagnieres G (2012) Real-time, in vivo measurement of tissular pO2 through the delayed fluorescence of endogenous protoporphyrin IX during photodynamic therapy. J Biomed Opt 17(11):115007PubMedGoogle Scholar
  122. 122.
    Pegaz B, Debefve E, Borle F, Ballini JP, van den Bergh H, Kouakou-Konan YN (2005) Encapsulation of porphyrins and chlorins in biodegradable nanoparticles: the effect of dye lipophilicity on the extravasation and the photothrombic activity. A comparative study. J Photochem Photobiol, B 80(1):19–27Google Scholar
  123. 123.
    Gottfried V, Davidi R, Averguj C, Kimel S (1995) In vivo damage to chorioallantoic membrane blood vessels by porphycene-induced photodynamic therapy. J Photochem Photobiol, B 30(2–3):115–121Google Scholar
  124. 124.
    Saw CL, Olivo M, Soo KC, Heng PW (2006) Delivery of hypericin for photodynamic applications. Cancer Lett 241(1):23–30PubMedGoogle Scholar
  125. 125.
    Pastorino F, Brignole C, Di Paolo D, Nico B, Pezzolo A, Marimpietri D, Pagnan G, Piccardi F, Cilli M, Longhi R, Ribatti D, Corti A, Allen TM, Ponzoni M (2006) Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy. Cancer Res 66(20):10073–10082PubMedGoogle Scholar
  126. 126.
    Knoll A, Schmidt S, Chapman M, Wiley D, Bulgrin J, Blank J, Kirchner L (1999) A comparison of two controlled-release delivery systems for the delivery of amiloride to control angiogenesis. Microvasc Res 58(1):1–9PubMedGoogle Scholar
  127. 127.
    Wacker BK, Scott EA, Kaneda MM, Alford SK, Elbert DL (2006) Delivery of sphingosine 1-phosphate from poly(ethylene glycol) hydrogels. Biomacromolecules 7(4):1335–1343PubMedPubMedCentralGoogle Scholar
  128. 128.
    Steffens GC, Yao C, Prevel P, Markowicz M, Schenck P, Noah EM, Pallua N (2004) Modulation of angiogenic potential of collagen matrices by covalent incorporation of heparin and loading with vascular endothelial growth factor. Tissue Eng 10(9–10):1502–1509PubMedGoogle Scholar
  129. 129.
    Chin WW, Lau WK, Bhuvaneswari R, Heng PW, Olivo M (2007) Chlorin e6-polyvinylpyrrolidone as a fluorescent marker for fluorescence diagnosis of human bladder cancer implanted on the chick chorioallantoic membrane model. Cancer Lett 245(1–2):127–133PubMedGoogle Scholar
  130. 130.
    Pegaz B, Debefve E, Ballini JP, Konan-Kouakou YN, van den Bergh H (2006) Effect of nanoparticle size on the extravasation and the photothrombic activity of meso(p-tetracarboxyphenyl)porphyrin. J Photochem Photobiol, B 85(3):216–222Google Scholar
  131. 131.
    Yalcin M, Bharali DJ, Lansing L, Dyskin E, Mousa SS, Hercbergs A, Davis FB, Davis PJ, Mousa SA (2009) Tetraidothyroacetic acid (tetrac) and tetrac nanoparticles inhibit growth of human renal cell carcinoma xenografts. Anticancer Res 29(10):3825–3831PubMedGoogle Scholar
  132. 132.
    Howl J, Matou-Nasri S, West DC, Farquhar M, Slaninova J, Ostenson CG, Zorko M, Ostlund P, Kumar S, Langel U, McKeating J, Jones S (2012) Bioportide: an emergent concept of bioactive cell-penetrating peptides. Cell Mol Life Sci 69(17):2951–2966PubMedGoogle Scholar
  133. 133.
    Burt HM, Jackson JK, Bains SK, Liggins RT, Oktaba AM, Arsenault AL, Hunter WL (1995) Controlled delivery of taxol from microspheres composed of a blend of ethylene-vinyl acetate copolymer and poly (d, l-lactic acid). Cancer Lett 88(1):73–79PubMedGoogle Scholar
  134. 134.
    Murray J, Brown L, Langer R (1984) Controlled release of microquantities of macromolecules. Cancer Drug Deliv 1(2):119–123PubMedGoogle Scholar
  135. 135.
    Wutzler P, Sauerbrei A, Hartl A, Reimer K (2003) Comparative testing of liposomal and aqueous formulations of povidone-iodine for their angioirritative potential at the chorioallantoic membrane of ex ovo cultivated chick embryos. Dermatology 207(1):43–47PubMedGoogle Scholar
  136. 136.
    Kanczler JM, Barry J, Ginty P, Howdle SM, Shakesheff KM, Oreffo RO (2007) Supercritical carbon dioxide generated vascular endothelial growth factor encapsulated poly(DL-lactic acid) scaffolds induce angiogenesis in vitro. Biochem Biophys Res Commun 352(1):135–141PubMedGoogle Scholar
  137. 137.
    Wong C, Inman E, Spaethe R, Helgerson S (2003) Fibrin-based biomaterials to deliver human growth factors. Thromb Haemost 89(3):573–582PubMedGoogle Scholar
  138. 138.
    Jain K, Jain NK (2014) Surface engineered dendrimers as antiangiogenic agent and carrier for anticancer drug: dual attack on cancer. J Nanosci Nanotechnol 14(7):5075–5087PubMedGoogle Scholar
  139. 139.
    Klueh U, Dorsky DI, Kreutzer DL (2005) Enhancement of implantable glucose sensor function in vivo using gene transfer-induced neovascularization. Biomaterials 26(10):1155–1163PubMedGoogle Scholar
  140. 140.
    Madsen SJ, Sun CH, Tromberg BJ, Wallace VP, Hirschberg H (2000) Photodynamic therapy of human glioma spheroids using 5-aminolevulinic acid. Photochem Photobiol 72(1):128–134PubMedGoogle Scholar
  141. 141.
    Debefve E, Pegaz B, Ballini JP, van den Bergh H (2009) Combination therapy using verteporfin and ranibizumab; optimizing the timing in the CAM model. Photochem Photobiol 85(6):1400–1408PubMedGoogle Scholar
  142. 142.
    Zuluaga MF, Mailhos C, Robinson G, Shima DT, Gurny R, Lange N (2007) Synergies of VEGF inhibition and photodynamic therapy in the treatment of age-related macular degeneration. Invest Ophthalmol Vis Sci 48(4):1767–1772PubMedGoogle Scholar
  143. 143.
    Seymour RS, Wagner-Amos K (2008) Non-invasive measurement of oxygen partial pressure, lateral diffusion and chorioallantoic blood flow under the avian eggshell. Comp Biochem Physiol A: Mol Integr Physiol 150(2):258–264Google Scholar
  144. 144.
    Huntosova V, Gay S, Nowak-Sliwinska P, Rajendran SK, Zellweger M, van den Bergh H, Wagnieres G (2014) In vivo measurement of tissue oxygenation by time-resolved luminescence spectroscopy: advantageous properties of dichlorotris(1, 10-phenanthroline)-ruthenium(II) hydrate. J Biomed Opt 19(7):77004PubMedGoogle Scholar
  145. 145.
    Debefve E, Cheng C, Schaefer SC, Yan H, Ballini JP, van den Bergh H, Lehr HA, Ruffieux C, Ris HB, Krueger T (2010) Photodynamic therapy induces selective extravasation of macromolecules: insights using intravital microscopy. J Photochem Photobiol B 98(1):69–76PubMedGoogle Scholar
  146. 146.
    Wagnières G, Jichlinski P, Lange N, Kucera P, van den Bergh H (2013) From bench to bedside – the Hexvix® story. In: S. HMaS (ed) Handbook of Photomedicine. Taylor & FrancisGoogle Scholar
  147. 147.
    Malik E, Meyhofer-Malik A, Berg C, Bohm W, Kunzi-Rapp K, Diedrich K, Ruck A (2000) Fluorescence diagnosis of endometriosis on the chorioallantoic membrane using 5-aminolaevulinic acid. Hum Reprod 15(3):584–588PubMedGoogle Scholar
  148. 148.
    Saw CL, Olivo M, Chin WW, Soo KC, Heng PW (2007) Superiority of N-methyl pyrrolidone over albumin with hypericin for fluorescence diagnosis of human bladder cancer cells implanted in the chick chorioallantoic membrane model. J Photochem Photobiol, B 86(3):207–218Google Scholar
  149. 149.
    Mondon K, Zeisser-Labouebe M, Gurny R, Moller M (2011) MPEG-hexPLA micelles as novel carriers for hypericin, a fluorescent marker for use in cancer diagnostics. Photochem Photobiol 87(2):399–407PubMedGoogle Scholar
  150. 150.
    Rees CJ, Allen J, Postma GN, Belafsky PC (2010) Effects of Gold laser on the avian chorioallantoic membrane. Ann Otol Rhinol Laryngol 119(1):50–53PubMedGoogle Scholar
  151. 151.
    Broadhurst MS, Akst LM, Burns JA, Kobler JB, Heaton JT, Anderson RR, Zeitels SM (2007) Effects of 532 nm pulsed-KTP laser parameters on vessel ablation in the avian chorioallantoic membrane: implications for vocal fold mucosa. Laryngoscope 117(2):220–225PubMedGoogle Scholar
  152. 152.
    Polytarchou C, Kardamakis D, Katsoris P, Papadimitriou E (2006) Antioxidants modify the effect of X rays on blood vessels. Anticancer Res 26(4B):3043–3047PubMedGoogle Scholar
  153. 153.
    Giannopoulou E, Katsoris P, Parthymou A, Kardamakis D, Papadimitriou E (2002) Amifostine protects blood vessels from the effects of ionizing radiation. Anticancer Res 22(5):2821–2826PubMedGoogle Scholar
  154. 154.
    Giannopoulou E, Katsoris P, Hatziapostolou M, Kardamakis D, Kotsaki E, Polytarchou C, Parthymou A, Papaioannou S, Papadimitriou E (2001) X-rays modulate extracellular matrix in vivo. Int J Cancer 94(5):690–698PubMedGoogle Scholar
  155. 155.
    Sabatasso S, Laissue JA, Hlushchuk R, Graber W, Bravin A, Brauer-Krisch E, Corde S, Blattmann H, Gruber G, Djonov V (2011) Microbeam radiation-induced tissue damage depends on the stage of vascular maturation. Int J Radiat Oncol Biol Phys 80(5):1522–1532PubMedGoogle Scholar
  156. 156.
    Gorski DH, Mauceri HJ, Salloum RM, Halpern A, Seetharam S, Weichselbaum RR (2003) Prolonged treatment with angiostatin reduces metastatic burden during radiation therapy. Cancer Res 63(2):308–311PubMedGoogle Scholar
  157. 157.
    Parthymou A, Kardamakis D, Pavlopoulos I, Papadimitriou E (2004) Irradiated C6 glioma cells induce angiogenesis in vivo and activate endothelial cells in vitro. Int J Cancer 110(6):807–814PubMedGoogle Scholar
  158. 158.
    Hatjikondi O, Ravazoula P, Kardamakis D, Dimopoulos J, Papaioannou S (1996) In vivo experimental evidence that the nitric oxide pathway is involved in the X-ray-induced antiangiogenicity. Br J Cancer 74(12):1916–1923PubMedPubMedCentralGoogle Scholar
  159. 159.
    Hadjimichael C, Kardamakis D, Papaioannou S (2005) Irradiation dose-response effects on angiogenesis and involvement of nitric oxide. Anticancer Res 25(2A):1059–1065PubMedGoogle Scholar
  160. 160.
    Kanthou C, Tozer GM (2009) Microtubule depolymerizing vascular disrupting agents: novel therapeutic agents for oncology and other pathologies. Int J Exp Pathol 90(3):284–294PubMedPubMedCentralGoogle Scholar
  161. 161.
    Galbraith SM, Chaplin DJ, Lee F, Stratford MR, Locke RJ, Vojnovic B, Tozer GM (2001) Effects of combretastatin A4 phosphate on endothelial cell morphology in vitro and relationship to tumour vascular targeting activity in vivo. Anticancer Res 21(1A):93–102PubMedGoogle Scholar
  162. 162.
    Mahal K, Resch M, Ficner R, Schobert R, Biersack B, Mueller T (2014) Effects of the tumor-vasculature-disrupting agent verubulin and two heteroaryl analogues on cancer cells, endothelial cells, and blood vessels. ChemMedChem 9(4):847–854PubMedGoogle Scholar
  163. 163.
    Ren X, Dai M, Lin LP, Li PK, Ding J (2009) Anti-angiogenic and vascular disrupting effects of C9, a new microtubule-depolymerizing agent. Brit J Pharmacol 156(8):1228–1238Google Scholar
  164. 164.
    Petitclerc E, Deschesnes RG, Cote MF, Marquis C, Janvier R, Lacroix J, Miot-Noirault E, Legault J, Mounetou E, Madelmont JC, R CG (2004) Antiangiogenic and antitumoral activity of phenyl-3-(2-chloroethyl)ureas: a class of soft alkylating agents disrupting microtubules that are unaffected by cell adhesion-mediated drug resistance. Cancer Res 64(13):4654–4663PubMedGoogle Scholar
  165. 165.
    Jiang Z, Wu M, Miao J, Duan H, Zhang S, Chen M, Sun L, Wang Y, Zhang X, Zhu X, Zhang L (2013) Deoxypodophyllotoxin exerts both anti-angiogenic and vascular disrupting effects. Int J Biochem Cell Biol 45(8):1710–1719PubMedGoogle Scholar
  166. 166.
    Ribatti D, Guidolin D, Conconi MT, Nico B, Baiguera S, Parnigotto PP, Vacca A, Nussdorfer GG (2003) Vinblastine inhibits the angiogenic response induced by adrenomedullin in vitro and in vivo. Oncogene 22(41):6458–6461PubMedGoogle Scholar
  167. 167.
    Muenzner JK, Biersack B, Kalie H, Andronache IC, Kaps L, Schuppan D, Sasse F, Schobert R (2014) Gold(I) biscarbene complexes derived from vascular-disrupting combretastatin A-4 address different targets and show antimetastatic potential. ChemMedChem 9(6):1195–1204PubMedGoogle Scholar
  168. 168.
    Vargas A, Zeisser-Labouebe M, Lange N, Gurny R, Delie F (2007) The chick embryo and its chorioallantoic membrane (CAM) for the in vivo evaluation of drug delivery systems. Adv Drug Deliver Rev 59(11):1162–1176Google Scholar
  169. 169.
    Ehrbar M, Djonov VG, Schnell C, Tschanz SA, Martiny-Baron G, Schenk U, Wood J, Burri PH, Hubbell JA, Zisch AH (2004) Cell-demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ Res 94(8):1124–1132PubMedGoogle Scholar
  170. 170.
    Vargas A, Zeisser-Labouebe M, Lange N, Gurny R, Delie F (2007) The chick embryo and its chorioallantoic membrane (CAM) for the in vivo evaluation of drug delivery systems. Adv Drug Deliver Rev 59(11):1162–1176Google Scholar
  171. 171.
    Ismail MS, Torsten U, Dressler C, Diederichs JE, Huske S, Weitzel H, Berlien HP (1999) Photodynamic therapy of malignant ovarian tumours cultivated on CAM. Lasers Med Sci 14(2):91–96PubMedGoogle Scholar
  172. 172.
    Romanoff AL (1960) The avian embryo: structural and functional development. McMillan, New YorkGoogle Scholar
  173. 173.
    Ling TY, Liu YL, Huang YK, Gu SY, Chen HK, Ho CC, Tsao PN, Tung YC, Chen HW, Cheng CH, Lin KH, Lin FH (2014) Differentiation of lung stem/progenitor cells into alveolar pneumocytes and induction of angiogenesis within a 3D gelatin—microbubble scaffold. Biomaterials 35(22):5660–5669PubMedGoogle Scholar
  174. 174.
    Noiman T, Buzhor E, Metsuyanim S, Harari-Steinberg O, Morgenshtern C, Dekel B, Goldstein RS (2011) A rapid in vivo assay system for analyzing the organogenetic capacity of human kidney cells. Organogenesis 7(2):140–144PubMedPubMedCentralGoogle Scholar
  175. 175.
    Klueh U, Dorsky DI, Moussy F, Kreutzer DL (2003) Ex ova chick chorioallantoic membrane as a novel model for evaluation of tissue responses to biomaterials and implants. J Biomed Mater Res Part A 67(3):838–843Google Scholar
  176. 176.
    Bronckaers A, Hilkens P, Fanton Y, Struys T, Gervois P, Politis C, Martens W, Lambrichts I (2013) Angiogenic properties of human dental pulp stem cells. PLoS ONE 8(8):e71104PubMedPubMedCentralGoogle Scholar
  177. 177.
    404: Acute Dermal Irritation/Corrosion (2012). In: OECD Guideline for the Testing of Chemicals OECD PublishingGoogle Scholar
  178. 178.
    Scheel J, Heppenheimer A, Lehringer E, Kreutz J, Poth A, Ammann H, Reisinger K, Banduhn N (2011) Classification and labeling of industrial products with extreme pH by making use of in vitro methods for the assessment of skin and eye irritation and corrosion in a weight of evidence approach. Toxicol in Vitro 25(7):1435–1447PubMedGoogle Scholar
  179. 179.
    Kunzi-Rapp K, Ruck A, Kaufmann R (1999) Characterization of the chick chorioallantoic membrane model as a short-term in vivo system for human skin. Arch Dermatol Res 291(5):290–295PubMedGoogle Scholar
  180. 180.
    Slodownik D, Grinberg I, Spira RM, Skornik Y, Goldstein RS (2009) The human skin/chick chorioallantoic membrane model accurately predicts the potency of cosmetic allergens. Expl Dermatol 18(4):409–413Google Scholar
  181. 181.
    Li J, Tripathi RC, Tripathi BJ (2008) Drug-induced ocular disorders. Drug Saf 31(2):127–141PubMedGoogle Scholar
  182. 182.
    Short BG (2008) Safety evaluation of ocular drug delivery formulations: techniques and practical considerations. Toxicol Pathol 36(1):49–62PubMedGoogle Scholar
  183. 183.
    Saw CL, Heng PW, Liew CV (2008) Chick chorioallantoic membrane as an in situ biological membrane for pharmaceutical formulation development: a review. Drug Dev Ind Pharm 34(11):1168–1177PubMedGoogle Scholar
  184. 184.
    Alany RG, Rades T, Nicoll J, Tucker IG, Davies NM (2006) W/O microemulsions for ocular delivery: evaluation of ocular irritation and precorneal retention. J. Control. Release 111(1–2):145–152PubMedGoogle Scholar
  185. 185.
    Luepke NP (1985) Hen’s egg chorioallantoic membrane test for irritation potential. Food Chem Toxicol 23(2):287–291PubMedGoogle Scholar
  186. 186.
    Barile FA (2010) Validating and troubleshooting ocular in vitro toxicology tests. J Pharmacol Toxicol Methods 61(2):136–145PubMedPubMedCentralGoogle Scholar
  187. 187.
    Abdelkader H, Ismail S, Hussein A, Wu Z, Al-Kassas R, Alany RG (2012) Conjunctival and corneal tolerability assessment of ocular naltrexone niosomes and their ingredients on the hen’s egg chorioallantoic membrane and excised bovine cornea models. Int J Pharm 432(1–2):1–10PubMedGoogle Scholar
  188. 188.
    Debbasch C, Ebenhahn C, Dami N, Pericoi M, Van den Berghe C, Cottin M, Nohynek GJ (2005) Eye irritation of low-irritant cosmetic formulations: correlation of in vitro results with clinical data and product composition. Food Chem Toxicol 43(1):155–165PubMedGoogle Scholar
  189. 189.
    Hagino S, Kinoshita S, Tani N, Nakamura T, Ono N, Konishi K, Iimura H, Kojima H, Ohno Y (1999) Interlaboratory validation of in vitro eye irritation tests for cosmetic ingredients. (2) chorioallantoic membrane (CAM) test. Toxicol Vitro 13(1):99–113Google Scholar
  190. 190.
    Leng T, Miller JM, Bilbao KV, Palanker DV, Huie P, Blumenkranz MS (2004) The chick chorioallantoic membrane as a model tissue for surgical retinal research and simulation. Retina 24(3):427–434PubMedGoogle Scholar
  191. 191.
    Guttman Krader C, Laudererdale F (2013) New innovations. Eurotimes 18(3):34Google Scholar
  192. 192.
    Ullrich F, Bergeles C, Pokki J, Ergeneman O, Erni S, Chatzipirpiridis G, Pane S, Framme C, Nelson BJ (2013) Mobility experiments with microrobots for minimally invasive intraocular surgery. Invest Ophthalmol Vis Sci 54(4):2853–2863PubMedGoogle Scholar
  193. 193.
    Murphy JB (1916) The effect of adult chicken organ grafts on the chick embryo. J Exp Med 24(1):1–5PubMedPubMedCentralGoogle Scholar
  194. 194.
    Chiba A, Yui C, Hirano S (2010) Liver reconstruction on the chorioallantoic membrane of the chick embryo. Arch Histol Cytol 73(1):45–53PubMedGoogle Scholar
  195. 195.
    Maas JW, Le Noble FA, Dunselman GA, de Goeij AF, Struyker Boudier HA, Evers JL (1999) The chick embryo chorioallantoic membrane as a model to investigate the angiogenic properties of human endometrium. Gynecol Obstet Invest 48(2):108–112PubMedGoogle Scholar
  196. 196.
    Bertossi M, Virgintino D, Coltey P, Errede M, Mancini L, Roncali L (1999) Angiogenesis and endothelium phenotype expression in embryonic adrenal gland and cerebellum grafted onto chorioallantoic membrane. Angiogenesis 3(4):305–315PubMedGoogle Scholar
  197. 197.
    Katoh M, Nakada K, Miyazaki JI (2001) Liver regeneration on chicken chorioallantoic membrane. Cells Tissues Organs 169(2):125–133PubMedGoogle Scholar
  198. 198.
    Lemon G, Howard D, Tomlinson MJ, Buttery LD, Rose FR, Waters SL, King JR (2009) Mathematical modelling of tissue-engineered angiogenesis. Math Biosci 221(2):101–120PubMedGoogle Scholar
  199. 199.
    Eugenin J, Eyzaguirre C (2005) Electrophysiological properties of rat nodose ganglion neurons co-transplanted with carotid bodies into the chick chorioallantoic membrane. Biol Res 38(4):329–334PubMedGoogle Scholar
  200. 200.
    Yang XB, Whitaker MJ, Sebald W, Clarke N, Howdle SM, Shakesheff KM, Oreffo RO (2004) Human osteoprogenitor bone formation using encapsulated bone morphogenetic protein 2 in porous polymer scaffolds. Tissue Eng 10(7–8):1037–1045PubMedGoogle Scholar
  201. 201.
    Vargas GE, Mesones RV, Bretcanu O, Lopez JM, Boccaccini AR, Gorustovich A (2009) Biocompatibility and bone mineralization potential of 45S5 Bioglass-derived glass-ceramic scaffolds in chick embryos. Acta Biomater 5(1):374–380PubMedGoogle Scholar
  202. 202.
    Buschmann J, Welti M, Hemmi S, Neuenschwander P, Baltes C, Giovanoli P, Rudin M, Calcagni M (2011) Three-dimensional co-cultures of osteoblasts and endothelial cells in DegraPol foam: histological and high-field magnetic resonance imaging analyses of pre-engineered capillary networks in bone grafts. Tissue Eng Part A 17(3–4):291–299PubMedGoogle Scholar
  203. 203.
    Navarro M, DeRuiter MC, Carretero A, Ruberte J (2003) Microvascular assembly and cell invasion in chick mesonephros grafted onto chorioallantoic membrane. J Anat 202(2):213–225PubMedPubMedCentralGoogle Scholar
  204. 204.
    Ko HC, Milthorpe BK, McFarland CD (2007) Engineering thick tissues-the vascularisation problem. Eur Cell Mater 14:1–18 discussion 18–19PubMedGoogle Scholar
  205. 205.
    Verhoelst E, De Ketelaere B, Bruggeman V, Villamor E, Decuypere E, De Baerdemaeker J (2011) Development of a fast, objective, quantitative methodology to monitor angiogenesis in the chicken chorioallantoic membrane during development. Int J Dev Biol 55(1):85–92PubMedGoogle Scholar
  206. 206.
    Verhoelst E, De Ketelaere B, Decuypere E, De Baerdemaeker J (2011) The effect of early prenatal hypercapnia on the vascular network in the chorioallantoic membrane of the chicken embryo. Biotechnol Progr 27(2):562–570Google Scholar
  207. 207.
    Warren CM, Ziyad S, Briot A, Der A, Iruela-Arispe ML (2014) A ligand-independent VEGFR2 signaling pathway limits angiogenic responses in diabetes. Sci Signal 7 (307):ra1Google Scholar
  208. 208.
    Ribatti D, Cruz A, Nico B, Favier J, Vacca A, Corsi P, Roncali L, Dammacco F (2002) In situ hybridization and immunogold localization of vascular endothelial growth factor receptor-2 on the pericytes of the chick chorioallantoic membrane. Cytokine 17(5):262–265PubMedGoogle Scholar
  209. 209.
    Ribatti D, Nico B, Vacca A, Roncali L (1999) Localization of factor VIII-related antigen in the endothelium of the chick embryo chorioallantoic membrane. Histochem Cell Biol 112(6):447–450PubMedGoogle Scholar
  210. 210.
    Ribatti D, Nico B, Vacca A, Iurlaro M, Roncali L (1999) Temporal expression of the matrix metalloproteinase MMP-2 correlates with fibronectin immunoreactivity during the development of the vascular system in the chick embryo chorioallantoic membrane. J Anat 195(Pt 1):39–44PubMedPubMedCentralGoogle Scholar
  211. 211.
    Iruela-Arispe ML, Lane TF, Redmond D, Reilly M, Bolender RP, Kavanagh TJ, Sage EH (1995) Expression of SPARC during development of the chicken chorioallantoic membrane: evidence for regulated proteolysis in vivo. Mol Biol Cell 6(3):327–343PubMedPubMedCentralGoogle Scholar
  212. 212.
    Flamme I, Schulze-Osthoff K, Jacob HJ (1991) Mitogenic activity of chicken chorioallantoic fluid is temporally correlated to vascular growth in the chorioallantoic membrane and related to fibroblast growth factors. Development 111(3):683–690PubMedGoogle Scholar
  213. 213.
    Moyon D, Pardanaud L, Yuan L, Breant C, Eichmann A (2001) Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Development 128(17):3359–3370PubMedGoogle Scholar
  214. 214.
    Schughart K, Accart N (2003) Use of adenovirus vectors for functional gene analysis in the chicken chorioallantoic membrane. Biotechniques 34(1):178–183PubMedGoogle Scholar
  215. 215.
    Forough R, Weylie B, Patel C, Ambrus S, Singh US, Zhu J (2005) Role of AKT/PKB signaling in fibroblast growth factor-1 (FGF-1)-induced angiogenesis in the chicken chorioallantoic membrane (CAM). J Cell Biochem 94(1):109–116PubMedGoogle Scholar
  216. 216.
    Druyan S, Levi E (2012) Reduced O2 concentration during CAM development—its effect on angiogenesis and gene expression in the broiler embryo CAM. Gene Expr Patterns 12(7–8):236–244PubMedGoogle Scholar
  217. 217.
    Strick DM, Waycaster RL, Montani JP, Gay WJ, Adair TH (1991) Morphometric measurements of chorioallantoic membrane vascularity: effects of hypoxia and hyperoxia. Am J Physiol 260(4 Pt 2):H1385–H1389PubMedGoogle Scholar
  218. 218.
    Burton GJ, Palmer ME (1992) Development of the chick chorioallantoic capillary plexus under normoxic and normobaric hypoxic and hyperoxic conditions: a morphometric study. J Exp Zool 262(3):291–298PubMedGoogle Scholar
  219. 219.
    Baum O, Suter F, Gerber B, Tschanz SA, Buergy R, Blank F, Hlushchuk R, Djonov V (2010) VEGF-A promotes intussusceptive angiogenesis in the developing chicken chorioallantoic membrane. Microcirculation 17(6):447–457PubMedGoogle Scholar
  220. 220.
    Schlatter P, Konig MF, Karlsson LM, Burri PH (1997) Quantitative study of intussusceptive capillary growth in the chorioallantoic membrane (CAM) of the chicken embryo. Microvasc Res 54(1):65–73PubMedGoogle Scholar
  221. 221.
    Patan S, Haenni B, Burri PH (1997) Implementation of intussusceptive microvascular growth in the chicken chorioallantoic membrane (CAM). Microvasc Res 53(1):33–52PubMedGoogle Scholar
  222. 222.
    Chouinard-Pelletier G, Leduc M, Guay D, Coulombe S, Leask RL, Jones EA (2012) Use of inert gas jets to measure the forces required for mechanical gene transfection. Biomed Eng Online 11:67PubMedPubMedCentralGoogle Scholar
  223. 223.
    Lee GS, Filipovic N, Miele LF, Lin M, Simpson DC, Giney B, Konerding MA, Tsuda A, Mentzer SJ (2010) Blood flow shapes intravascular pillar geometry in the chick chorioallantoic membrane. J Angiogenes Res 2:11PubMedPubMedCentralGoogle Scholar
  224. 224.
    Paulis YW, Soetekouw PM, Verheul HM, Tjan-Heijnen VC (1806) Griffioen AW (2010) Signalling pathways in vasculogenic mimicry. Biochim Biophys Acta 1:18–28Google Scholar
  225. 225.
    Branum SR, Yamada-Fisher M, Burggren W (2013) Reduced heart rate and cardiac output differentially affect angiogenesis, growth, and development in early chicken embryos (Gallus domesticus). Physiol Biochem Zool 86(3):370–382PubMedGoogle Scholar
  226. 226.
    le Noble F, Moyon D, Pardanaud L, Yuan L, Djonov V, Matthijsen R, Breant C, Fleury V, Eichmann A (2004) Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131(2):361–375PubMedGoogle Scholar
  227. 227.
    Matthews BD, Overby DR, Mannix R, Ingber DE (2006) Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J Cell Sci 119(Pt 3):508–518PubMedGoogle Scholar
  228. 228.
    Kumar S, Maxwell IZ, Heisterkamp A, Polte TR, Lele TP, Salanga M, Mazur E, Ingber DE (2006) Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys J 90(10):3762–3773PubMedPubMedCentralGoogle Scholar
  229. 229.
    Moore KA, Polte T, Huang S, Shi B, Alsberg E, Sunday ME, Ingber DE (2005) Control of basement membrane remodeling and epithelial branching morphogenesis in embryonic lung by Rho and cytoskeletal tension. Dev Dyn 232(2):268–281PubMedGoogle Scholar
  230. 230.
    Kilarski WW, Samolov B, Petersson L, Kvanta A, Gerwins P (2009) Biomechanical regulation of blood vessel growth during tissue vascularization. Nat Med 15(6):657–664PubMedGoogle Scholar
  231. 231.
  232. 232.
    Ruck A, Bohmler A, Steiner R (2005) PDT with TOOKAD® studied in the chorioallantoic membrane of fertilized eggs. Photodiagnosis Photodyn Ther 2(1):79–90PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institute of Chemical Sciences and EngineeringSwiss Federal Institute of Technology (EPFL)LausanneSwitzerland
  2. 2.Department of Chemical and Biomolecular EngineeringUCLALos AngelesUSA
  3. 3.Molecular Biology InstituteUCLALos AngelesUSA

Personalised recommendations