, Volume 17, Issue 3, pp 641–659 | Cite as

Anti-VEGF therapy reduces intestinal inflammation in Endoglin heterozygous mice subjected to experimental colitis

  • Daniela S. Ardelean
  • Melissa Yin
  • Mirjana Jerkic
  • Madonna Peter
  • Bo Ngan
  • Robert S. Kerbel
  • F. Stuart Foster
  • Michelle LetarteEmail author
Original Paper


Chronic intestinal inflammation is associated with pathological angiogenesis that further amplifies the inflammatory response. Vascular endothelial growth factor (VEGF), is a major angiogenic cytokine that has been implicated in chronic colitis and inflammatory bowel diseases. Endoglin (CD105), a transforming growth factor-β superfamily co-receptor expressed on endothelial and some myeloid cells, is a modulator of angiogenesis involved in wound healing and potentially in resolution of inflammation. We showed previously that Endoglin heterozygous (Eng +/−) mice subjected to dextran sodium sulfate developed severe colitis, abnormal colonic vessels and high tissue VEGF. We therefore tested in the current study if treatment with a monoclonal antibody to VEGF could ameliorate chronic colitis in Eng +/− mice. Tissue inflammation and microvessel density (MVD) were quantified on histological slides. Colonic wall thickness, microvascular hemodynamics and targeted MAdCAM-1+ inflamed vessels were assessed in vivo by ultrasound. Mediators of angiogenesis and inflammation were measured by Milliplex and ELISA assays. Colitic Eng +/− mice showed an increase in intestinal inflammation, MVD, colonic wall thickness, microvascular hemodynamics and the number of MAdCAM-1+ microvessels relative to colitic Eng +/+ mice; these parameters were all attenuated by anti-VEGF treatment. Of all factors up-regulated in the inflamed gut, granulocyte colony-stimulating factor (G-CSF) and amphiregulin were further increased in colitic Eng +/− versus Eng +/+ mice. Anti-VEGF therapy decreased tissue VEGF and inflammation-induced endoglin, IL-1β and G-CSF in colitic Eng +/− mice. Our results suggest that endoglin modulates intestinal angiogenic and inflammatory responses in colitis. Furthermore, contrast-enhanced ultrasound provides an excellent non-invasive imaging modality to monitor gut angiogenesis, inflammation and responses to anti-angiogenic treatment.


Endoglin VEGF Inflammation Angiogenesis Anti-VEGF therapy 



We thank Genentech for kindly providing the G6-31 anti-VEGF antibody; Dr. Wen-Rong Lie from EMD Millipore for the mouse angiogenesis/growth factor magnetic bead panel kit; Lily Morikawa and Napoleon Law from the Pathology Core Centre of the Modeling Human Disease Toronto Centre for Phenogenomics, Toronto, for help with the CD31 staining; Dr. Herman Yeger, for the use of the Olympus microscope; John Sun (VisualSonics, Toronto) for performing the pilot ultrasound measurements in colitic mice. We also thank the reviewers for their insightful comments. This work was supported by Grants from the Canadian Institute of Health Research (CIHR) (MOP-6247) and the Heart and Stroke Foundation of Canada (T5598) to ML, and from the Terry Fox Foundation, VisualSonics Inc. and CIHR (MOP–12164) to FSF. D. S. Ardelean received the CIHR/Canadian Association of Gastroenterology/Abbott fellowship award.

Conflicts of interest

Dr. Foster discloses that he is a consultant to VisualSonics Inc. The other authors declare no conflicts of interest.


  1. 1.
    Abraham C, Cho JH (2009) Inflammatory bowel disease. N Engl J Med 361(21):2066–2078. doi: 10.1056/NEJMra0804647 PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Chidlow JH Jr, Shukla D, Grisham MB, Kevil CG (2007) Pathogenic angiogenesis in IBD and experimental colitis: new ideas and therapeutic avenues. Am J Physiol Gastrointest Liver Physiol 293(1):G5–G18. doi: 10.1152/ajpgi.00107.2007 PubMedCrossRefGoogle Scholar
  3. 3.
    Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358(19):2039–2049. doi: 10.1056/NEJMra0706596 PubMedCrossRefGoogle Scholar
  4. 4.
    Clauss M, Gerlach M, Gerlach H, Brett J, Wang F, Familletti PC, Pan YC, Olander JV, Connolly DT, Stern D (1990) Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J Exp Med 172(6):1535–1545PubMedCrossRefGoogle Scholar
  5. 5.
    Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D (1996) Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87(8):3336–3343PubMedGoogle Scholar
  6. 6.
    Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, Carbone DP (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92(11):4150–4166PubMedGoogle Scholar
  7. 7.
    Ohm JE, Gabrilovich DI, Sempowski GD, Kisseleva E, Parman KS, Nadaf S, Carbone DP (2003) VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 101(12):4878–4886. doi: 10.1182/blood-2002-07-1956 PubMedCrossRefGoogle Scholar
  8. 8.
    Bousvaros A, Leichtner A, Zurakowski D, Kwon J, Law T, Keough K, Fishman S (1999) Elevated serum vascular endothelial growth factor in children and young adults with Crohn’s disease. Dig Dis Sci 44(2):424–430PubMedCrossRefGoogle Scholar
  9. 9.
    Kanazawa S, Tsunoda T, Onuma E, Majima T, Kagiyama M, Kikuchi K (2001) VEGF, basic-FGF, and TGF-beta in Crohn’s disease and ulcerative colitis: a novel mechanism of chronic intestinal inflammation. Am J Gastroenterol 96(3):822–828. doi: 10.1111/j.1572-0241.2001.03527.x PubMedGoogle Scholar
  10. 10.
    Griga T, Voigt E, Gretzer B, Brasch F, May B (1999) Increased production of vascular endothelial growth factor by intestinal mucosa of patients with inflammatory bowel disease. Hepatogastroenterology 46(26):920–923PubMedGoogle Scholar
  11. 11.
    Coriat R, Mir O, Leblanc S, Ropert S, Brezault C, Chaussade S, Goldwasser F (2011) Feasibility of anti-VEGF agent bevacizumab in patients with Crohn’s disease. Inflamm Bowel Dis 17(7):1632. doi: 10.1002/ibd.21545 PubMedCrossRefGoogle Scholar
  12. 12.
    Tolstanova G, Khomenko T, Deng X, Chen L, Tarnawski A, Ahluwalia A, Szabo S, Sandor Z (2009) Neutralizing anti-vascular endothelial growth factor (VEGF) antibody reduces severity of experimental ulcerative colitis in rats: direct evidence for the pathogenic role of VEGF. J Pharmacol Exp Ther 328(3):749–757. doi: 10.1124/jpet.108.145128 PubMedCrossRefGoogle Scholar
  13. 13.
    Gougos A, Letarte M (1988) Identification of a human endothelial cell antigen with monoclonal antibody 44G4 produced against a pre-B leukemic cell line. J Immunol 141(6):1925–1933PubMedGoogle Scholar
  14. 14.
    Lastres P, Bellon T, Cabanas C, Sanchez-Madrid F, Acevedo A, Gougos A, Letarte M, Bernabeu C (1992) Regulated expression on human macrophages of endoglin, an Arg-Gly-Asp-containing surface antigen. Eur J Immunol 22(2):393–397. doi: 10.1002/eji.1830220216 PubMedCrossRefGoogle Scholar
  15. 15.
    Rokhlin OW, Cohen MB, Kubagawa H, Letarte M, Cooper MD (1995) Differential expression of endoglin on fetal and adult hematopoietic cells in human bone marrow. J Immunol 154(9):4456–4465PubMedGoogle Scholar
  16. 16.
    St-Jacques S, Cymerman U, Pece N, Letarte M (1994) Molecular characterization and in situ localization of murine endoglin reveal that it is a transforming growth factor-beta binding protein of endothelial and stromal cells. Endocrinology 134(6):2645–2657PubMedGoogle Scholar
  17. 17.
    Adam PJ, Clesham GJ, Weissberg PL (1998) Expression of endoglin mRNA and protein in human vascular smooth muscle cells. Biochem Biophys Res Commun 247(1):33–37. doi: 10.1006/bbrc.1998.8734 PubMedCrossRefGoogle Scholar
  18. 18.
    Bourdeau A, Dumont DJ, Letarte M (1999) A murine model of hereditary hemorrhagic telangiectasia. J Clin Invest 104(10):1343–1351. doi: 10.1172/JCI8088 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Torsney E, Charlton R, Parums D, Collis M, Arthur HM (2002) Inducible expression of human endoglin during inflammation and wound healing in vivo. Inflamm Res 51(9):464–470PubMedCrossRefGoogle Scholar
  20. 20.
    van de Kerkhof PC, Rulo HF, van Pelt JP, van Vlijmen-Willems IM, De Jong EM (1998) Expression of endoglin in the transition between psoriatic uninvolved and involved skin. Acta Derm Venereol 78(1):19–21PubMedCrossRefGoogle Scholar
  21. 21.
    Burke JP, Watson RW, Mulsow JJ, Docherty NG, Coffey JC, O’Connell PR (2010) Endoglin negatively regulates transforming growth factor beta1-induced profibrotic responses in intestinal fibroblasts. Br J Surg 97(6):892–901. doi: 10.1002/bjs.6996 PubMedCrossRefGoogle Scholar
  22. 22.
    Jerkic M, Peter M, Ardelean D, Fine M, Konerding MA, Letarte M (2010) Dextran sulfate sodium leads to chronic colitis and pathological angiogenesis in Endoglin heterozygous mice. Inflamm Bowel Dis 16(11):1859–1870. doi: 10.1002/ibd.21288 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Liang WC, Wu X, Peale FV, Lee CV, Meng YG, Gutierrez J, Fu L, Malik AK, Gerber HP, Ferrara N, Fuh G (2006) Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies completely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF. J Biol Chem 281(2):951–961. doi: 10.1074/jbc.M508199200 PubMedCrossRefGoogle Scholar
  24. 24.
    Rychak JJ, Graba J, Cheung AM, Mystry BS, Lindner JR, Kerbel RS, Foster FS (2007) Microultrasound molecular imaging of vascular endothelial growth factor receptor 2 in a mouse model of tumor angiogenesis. Mol Imaging 6(5):289–296PubMedGoogle Scholar
  25. 25.
    Foster FS, Hossack J, Adamson SL (2011) Micro-ultrasound for preclinical imaging. Interface Focus 1(4):576–601. doi: 10.1098/rsfs.2011.0037 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Van der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP, Van Goudoever JB, Buller HA, Dekker J, Van Seuningen I, Renes IB, Einerhand AW (2006) Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131(1):117–129. doi: 10.1053/j.gastro.2006.04.020 PubMedCrossRefGoogle Scholar
  27. 27.
    Loupakis F, Falcone A, Masi G, Fioravanti A, Kerbel RS, Del Tacca M, Bocci G (2007) Vascular endothelial growth factor levels in immunodepleted plasma of cancer patients as a possible pharmacodynamic marker for bevacizumab activity. J Clin Oncol 25(13):1816–1818. doi: 10.1200/JCO.2006.10.3051 PubMedCrossRefGoogle Scholar
  28. 28.
    Hlatky L, Hahnfeldt P, Folkman J (2002) Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst 94(12):883–893PubMedCrossRefGoogle Scholar
  29. 29.
    Ardelean DS, Jerkic M, Yin M, Peter M, Ngan B, Kerbel RS, Foster FS, Letarte M (2013) Endoglin and activin receptor-like kinase 1 heterozygous mice have a distinct pulmonary and hepatic angiogenic profile and response to anti-VEGF treatment. Angiogenesis. doi: 10.1007/s10456-013-9383-4 PubMedGoogle Scholar
  30. 30.
    Shigematsu T, Specian RD, Wolf RE, Grisham MB, Granger DN (2001) MAdCAM mediates lymphocyte-endothelial cell adhesion in a murine model of chronic colitis. Am J Physiol Gastrointest Liver Physiol 281(5):G1309–G1315PubMedGoogle Scholar
  31. 31.
    Chidlow JH Jr, Langston W, Greer JJ, Ostanin D, Abdelbaqi M, Houghton J, Senthilkumar A, Shukla D, Mazar AP, Grisham MB, Kevil CG (2006) Differential angiogenic regulation of experimental colitis. Am J Pathol 169(6):2014–2030. doi: 10.2353/ajpath.2006.051021 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Metcalf D (1985) The granulocyte-macrophage colony-stimulating factors. Science 229(4708):16–22PubMedCrossRefGoogle Scholar
  33. 33.
    Demetri GD, Griffin JD (1991) Granulocyte colony-stimulating factor and its receptor. Blood 78(11):2791–2808PubMedGoogle Scholar
  34. 34.
    Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29(6):313–326. doi: 10.1089/jir2008.0027 PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Khan WI, Motomura Y, Wang H, El-Sharkawy RT, Verdu EF, Verma-Gandhu M, Rollins BJ, Collins SM (2006) Critical role of MCP-1 in the pathogenesis of experimental colitis in the context of immune and enterochromaffin cells. Am J Physiol Gastrointest Liver Physiol 291(5):G803–G811. doi: 10.1152/ajpgi.00069.2006 PubMedCrossRefGoogle Scholar
  36. 36.
    Shao J, Sheng H (2010) Amphiregulin promotes intestinal epithelial regeneration: roles of intestinal subepithelial myofibroblasts. Endocrinology 151(8):3728–3737. doi: 10.1210/en.2010-0319 PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Zhou Y, Lee JY, Lee CM, Cho WK, Kang MJ, Koff JL, Yoon PO, Chae J, Park HO, Elias JA, Lee CG (2012) Amphiregulin, an epidermal growth factor receptor ligand, plays an essential role in the pathogenesis of transforming growth factor-beta-induced pulmonary fibrosis. J Biol Chem 287(50):41991–42000. doi: 10.1074/jbc.M112.356824 PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Zaiss DM, van Loosdregt J, Gorlani A, Bekker CP, Grone A, Sibilia M, van Bergen en Henegouwen PM, Roovers RC, Coffer PJ, Sijts AJ (2013) Amphiregulin enhances regulatory T cell-suppressive function via the epidermal growth factor receptor. Immunity 38(2):275–284. doi: 10.1016/j.immuni.2012.09.023 PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Kanayama M, Takahara T, Yata Y, Xue F, Shinno E, Nonome K, Kudo H, Kawai K, Kudo T, Tabuchi Y, Watanabe A, Sugiyama T (2007) Hepatocyte growth factor promotes colonic epithelial regeneration via Akt signaling. Am J Physiol Gastrointest Liver Physiol 293(1):G230–G239. doi: 10.1152/ajpgi.00068.2007 PubMedCrossRefGoogle Scholar
  40. 40.
    Ido A, Numata M, Kodama M, Tsubouchi H (2005) Mucosal repair and growth factors: recombinant human hepatocyte growth factor as an innovative therapy for inflammatory bowel disease. J Gastroenterol 40(10):925–931. doi: 10.1007/s00535-005-1705-x PubMedCrossRefGoogle Scholar
  41. 41.
    Oh K, Iimuro Y, Takeuchi M, Kaneda Y, Iwasaki T, Terada N, Matsumoto T, Nakanishi K, Fujimoto J (2005) Ameliorating effect of hepatocyte growth factor on inflammatory bowel disease in a murine model. Am J Physiol Gastrointest Liver Physiol 288(4):G729–G735. doi: 10.1152/ajpgi.00438.2004 PubMedCrossRefGoogle Scholar
  42. 42.
    Kallincos NC, Xian CJ, Dunbar AJ, Couper RT, Read LC (2000) Cloning of rat betacellulin and characterization of its expression in the gastrointestinal tract. Growth Factors 18(3):203–213PubMedCrossRefGoogle Scholar
  43. 43.
    Feagins LA (2010) Role of transforming growth factor-beta in inflammatory bowel disease and colitis-associated colon cancer. Inflamm Bowel Dis 16(11):1963–1968. doi: 10.1002/ibd.21281 PubMedCrossRefGoogle Scholar
  44. 44.
    Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, Roberts AB, Sporn MB, Ward JM, Karlsson S (1993) Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A 90(2):770–774PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Monteleone G, Kumberova A, Croft NM, McKenzie C, Steer HW, MacDonald TT (2001) Blocking Smad7 restores TGF-beta1 signaling in chronic inflammatory bowel disease. J Clin Invest 108(4):601–609. doi: 10.1172/JCI12821 PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Miyazono K, Kusanagi K, Inoue H (2001) Divergence and convergence of TGF-beta/BMP signaling. J Cell Physiol 187(3):265–276. doi: 10.1002/jcp.1080 PubMedCrossRefGoogle Scholar
  47. 47.
    Danese S, Sans M, de la Motte C, Graziani C, West G, Phillips MH, Pola R, Rutella S, Willis J, Gasbarrini A, Fiocchi C (2006) Angiogenesis as a novel component of inflammatory bowel disease pathogenesis. Gastroenterology 130(7):2060–2073. doi: 10.1053/j.gastro.2006.03.054 PubMedCrossRefGoogle Scholar
  48. 48.
    Briskin M, Winsor-Hines D, Shyjan A, Cochran N, Bloom S, Wilson J, McEvoy LM, Butcher EC, Kassam N, Mackay CR, Newman W, Ringler DJ (1997) Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue. Am J Pathol 151(1):97–110PubMedCentralPubMedGoogle Scholar
  49. 49.
    Farkas S, Hornung M, Sattler C, Edtinger K, Steinbauer M, Anthuber M, Schlitt HJ, Herfarth H, Geissler EK (2006) Blocking MAdCAM-1 in vivo reduces leukocyte extravasation and reverses chronic inflammation in experimental colitis. Int J Colorectal Dis 21(1):71–78. doi: 10.1007/s00384-004-0709-y PubMedCrossRefGoogle Scholar
  50. 50.
    Bachmann C, Klibanov AL, Olson TS, Sonnenschein JR, Rivera-Nieves J, Cominelli F, Ley KF, Lindner JR, Pizarro TT (2006) Targeting mucosal addressin cellular adhesion molecule (MAdCAM)-1 to noninvasively image experimental Crohn’s disease. Gastroenterology 130(1):8–16. doi: 10.1053/j.gastro.2005.11.009 PubMedCrossRefGoogle Scholar
  51. 51.
    Vermeire S, Ghosh S, Panes J, Dahlerup JF, Luegering A, Sirotiakova J, Strauch U, Burgess G, Spanton J, Martin SW, Niezychowski W (2011) The mucosal addressin cell adhesion molecule antibody PF-00547, 659 in ulcerative colitis: a randomised study. Gut 60(8):1068–1075. doi: 10.1136/gut.2010.226548 PubMedCrossRefGoogle Scholar
  52. 52.
    Chidlow JH Jr, Glawe JD, Pattillo CB, Pardue S, Zhang S, Kevil CG (2011) VEGF(1)(6)(4) isoform specific regulation of T-cell-dependent experimental colitis in mice. Inflamm Bowel Dis 17(7):1501–1512. doi: 10.1002/ibd.21525 PubMedCrossRefGoogle Scholar
  53. 53.
    Scaldaferri F, Vetrano S, Sans M, Arena V, Straface G, Stigliano E, Repici A, Sturm A, Malesci A, Panes J, Yla-Herttuala S, Fiocchi C, Danese S (2009) VEGF-A links angiogenesis and inflammation in inflammatory bowel disease pathogenesis. Gastroenterology 136(2):585–595. doi: 10.1053/j.gastro.2008.09.064 PubMedCrossRefGoogle Scholar
  54. 54.
    Chernoguz A, Crawford K, Vandersall A, Rao M, Willson T, Denson LA, Frischer JS (2012) Pretreatment with anti-VEGF therapy may exacerbate inflammation in experimental acute colitis. J Pediatr Surg 47(2):347–354. doi: 10.1016/j.jpedsurg.2011.11.028 PubMedCrossRefGoogle Scholar
  55. 55.
    Borofsky SE, Levine MS, Rubesin SE, Tanyi JL, Chu CS, Lev-Toaff AS (2013) Bevacizumab-induced perforation of the gastrointestinal tract: clinical and radiographic findings in 11 patients. Abdom Imaging 38(2):265–272. doi: 10.1007/s00261-012-9913-3 PubMedCrossRefGoogle Scholar
  56. 56.
    Goessling W, Mayer RJ (2006) Systemic treatment of patients who have colorectal cancer and inflammatory bowel disease. Gastroenterol Clin North Am 35(3):713–727. doi: 10.1016/j.gtc.2006.07.006 PubMedCrossRefGoogle Scholar
  57. 57.
    Ina K, Kusugami K, Hosokawa T, Imada A, Shimizu T, Yamaguchi T, Ohsuga M, Kyokane K, Sakai T, Nishio Y, Yokoyama Y, Ando T (1999) Increased mucosal production of granulocyte colony-stimulating factor is related to a delay in neutrophil apoptosis in inflammatory bowel disease. J Gastroenterol Hepatol 14(1):46–53PubMedCrossRefGoogle Scholar
  58. 58.
    McAlindon ME, Hawkey CJ, Mahida YR (1998) Expression of interleukin 1 beta and interleukin 1 beta converting enzyme by intestinal macrophages in health and inflammatory bowel disease. Gut 42(2):214–219PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Ludwiczek O, Vannier E, Borggraefe I, Kaser A, Siegmund B, Dinarello CA, Tilg H (2004) Imbalance between interleukin-1 agonists and antagonists: relationship to severity of inflammatory bowel disease. Clin Exp Immunol 138(2):323–329. doi: 10.1111/j.1365-2249.2004.02599.x PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Nemetz A, Nosti-Escanilla MP, Molnar T, Kope A, Kovacs A, Feher J, Tulassay Z, Nagy F, Garcia-Gonzalez MA, Pena AS (1999) IL1B gene polymorphisms influence the course and severity of inflammatory bowel disease. Immunogenetics 49(6):527–531PubMedCrossRefGoogle Scholar
  61. 61.
    Guimbaud R, Bertrand V, Chauvelot-Moachon L, Quartier G, Vidon N, Giroud JP, Couturier D, Chaussade S (1998) Network of inflammatory cytokines and correlation with disease activity in ulcerative colitis. Am J Gastroenterol 93(12):2397–2404. doi: 10.1111/j.1572-0241.1998.00694.x PubMedCrossRefGoogle Scholar
  62. 62.
    Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C (1994) Macrophages and angiogenesis. J Leukoc Biol 55(3):410–422PubMedGoogle Scholar
  63. 63.
    Mahida YR (2000) The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflamm Bowel Dis 6(1):21–33PubMedCrossRefGoogle Scholar
  64. 64.
    Naito Y, Takagi T, Uchiyama K, Kuroda M, Kokura S, Ichikawa H, Yanagisawa R, Inoue K, Takano H, Satoh M, Yoshida N, Okanoue T, Yoshikawa T (2004) Reduced intestinal inflammation induced by dextran sodium sulfate in interleukin-6-deficient mice. Int J Mol Med 14(2):191–196PubMedGoogle Scholar
  65. 65.
    Sander LE, Obermeier F, Dierssen U, Kroy DC, Singh AK, Seidler U, Streetz KL, Lutz HH, Muller W, Tacke F, Trautwein C (2008) Gp130 signaling promotes development of acute experimental colitis by facilitating early neutrophil/macrophage recruitment and activation. J Immunol 181(5):3586–3594PubMedCrossRefGoogle Scholar
  66. 66.
    Voronov E, Shouval DS, Krelin Y, Cagnano E, Benharroch D, Iwakura Y, Dinarello CA, Apte RN (2003) IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci USA 100(5):2645–2650. doi: 10.1073/pnas.0437939100 PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Holzinger C, Weissinger E, Zuckermann A, Imhof M, Kink F, Schollhammer A, Kopp C, Wolner E (1993) Effects of interleukin-1, -2, -4, -6, interferon-gamma and granulocyte/macrophage colony stimulating factor on human vascular endothelial cells. Immunol Lett 35(2):109–117PubMedCrossRefGoogle Scholar
  68. 68.
    Natori T, Sata M, Washida M, Hirata Y, Nagai R, Makuuchi M (2002) G-CSF stimulates angiogenesis and promotes tumor growth: potential contribution of bone marrow-derived endothelial progenitor cells. Biochem Biophys Res Commun 297(4):1058–1061PubMedCrossRefGoogle Scholar
  69. 69.
    Miyake M, Goodison S, Urquidi V, Gomes Giacoia E, Rosser CJ (2013) Expression of CXCL1 in human endothelial cells induces angiogenesis through the CXCR2 receptor and the ERK1/2 and EGF pathways. Lab Invest 93(7):768–778. doi: 10.1038/labinvest.2013.71 PubMedCrossRefGoogle Scholar
  70. 70.
    Niu J, Azfer A, Zhelyabovska O, Fatma S, Kolattukudy PE (2008) Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP). J Biol Chem 283(21):14542–14551. doi: 10.1074/jbc.M802139200 PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Kudo T, Matsumoto T, Nakamichi I, Yada S, Esaki M, Jo Y, Ohji Y, Yao T, Iida M (2008) Recombinant human granulocyte colony-stimulating factor reduces colonic epithelial cell apoptosis and ameliorates murine dextran sulfate sodium-induced colitis. Scand J Gastroenterol 43(6):689–697. doi: 10.1080/00365520701864627 PubMedCrossRefGoogle Scholar
  72. 72.
    Dejaco C, Lichtenberger C, Miehsler W, Oberhuber G, Herbst F, Vogelsang H, Gangl A, Reinisch W (2003) An open-label pilot study of granulocyte colony-stimulating factor for the treatment of severe endoscopic postoperative recurrence in Crohn’s disease. Digestion 68(2–3):63–70. doi: PubMedCrossRefGoogle Scholar
  73. 73.
    Korzenik JR, Dieckgraefe BK (2005) An open-labelled study of granulocyte colony-stimulating factor in the treatment of active Crohn’s disease. Aliment Pharmacol Ther 21(4):391–400. doi: 10.1111/j.1365-2036.2005.02287.x PubMedCrossRefGoogle Scholar
  74. 74.
    Zhong C, Qu X, Tan M, Meng YG, Ferrara N (2009) Characterization and regulation of bv8 in human blood cells. Clin Cancer Res 15(8):2675–2684. doi: 10.1158/1078-0432.CCR-08-1954 PubMedCrossRefGoogle Scholar
  75. 75.
    Shojaei F, Wu X, Qu X, Kowanetz M, Yu L, Tan M, Meng YG, Ferrara N (2009) G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci USA 106(16):6742–6747. doi: 10.1073/pnas.0902280106 PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Kapur NK, Wilson S, Yunis AA, Qiao X, Mackey E, Paruchuri V, Baker C, Aronovitz MJ, Karumanchi SA, Letarte M, Kass DA, Mendelsohn ME, Karas RH (2012) Reduced endoglin activity limits cardiac fibrosis and improves survival in heart failure. Circulation 125(22):2728–2738. doi: 10.1161/CIRCULATIONAHA.111.080002 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Daniela S. Ardelean
    • 1
    • 2
    • 3
  • Melissa Yin
    • 4
  • Mirjana Jerkic
    • 1
    • 5
  • Madonna Peter
    • 1
    • 3
  • Bo Ngan
    • 6
    • 7
  • Robert S. Kerbel
    • 4
    • 8
  • F. Stuart Foster
    • 4
    • 8
  • Michelle Letarte
    • 1
    • 3
    • 5
    • 8
    Email author
  1. 1.Molecular Structure and Function Program, Peter Gilgan Centre for Research and LearningThe Hospital for Sick ChildrenTorontoCanada
  2. 2.Division of RheumatologyThe Hospital for Sick ChildrenTorontoCanada
  3. 3.Department of ImmunologyUniversity of TorontoTorontoCanada
  4. 4.Biological SciencesSunnybrook Health Sciences CenterTorontoCanada
  5. 5.Heart and Stroke Richard Lewar Centre of ExcellenceUniversity of TorontoTorontoCanada
  6. 6.Division of PathologyThe Hospital for Sick ChildrenTorontoCanada
  7. 7.Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada
  8. 8.Department of Medical BiophysicsUniversity of TorontoTorontoCanada

Personalised recommendations