, Volume 17, Issue 2, pp 325–334 | Cite as

Inflammation-induced lymphangiogenesis and lymphatic dysfunction

Review Paper


The lymphatic system is intimately linked to tissue fluid homeostasis and immune cell trafficking. These functions are paramount in the establishment and development of an inflammatory response. In the past decade, an increasing number of reports has revealed that marked changes, such as lymphangiogenesis and lymphatic contractile dysfunction occur in both vascular and nodal parts of the lymphatic system during inflammation, as well as other disease processes. This review provides a critical update on the role of the lymphatic system in disease process such as chronic inflammation and cancer and examines the changes in lymphatic functions the diseases cause and the influence these changes have on the progression of the diseases.


Lymphangiogenesis Lymphatic pumping Inflammation Cancer Immune cell trafficking Edema 


  1. 1.
    Casley-Smith JR (1972) The role of the endothelial intercellular junctions in the functioning of the initial lymphatics. Angiologica 9:106–131PubMedGoogle Scholar
  2. 2.
    Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, Vestweber D, Corada M, Molendini C, Dejana E, McDonald DM (2007) Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med 204:2349–2362PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Aukland K, Reed RK (1993) Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev 73:1–78PubMedGoogle Scholar
  4. 4.
    Miteva DO, Rutkowski JM, Dixon JB, Kilarski W, Shields JD, Swartz MA (2010) Transmural flow modulates cell and fluid transport functions of lymphatic endothelium. Circ Res 106:920–931CrossRefPubMedGoogle Scholar
  5. 5.
    Mempel TR, Henrickson SE, Von Andrian UH (2004) T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427:154–159CrossRefPubMedGoogle Scholar
  6. 6.
    Sixt M, Kanazawa N, Selg M, Samson T, Roos G, Reinhardt DP, Pabst R, Lutz MB, Sorokin L (2005) The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22:19–29CrossRefPubMedGoogle Scholar
  7. 7.
    Gretz JE, Norbury CC, Anderson AO, Proudfoot AE, Shaw S (2000) Lymph-borne chemokines and other low molecular weight molecules reach high endothelial venules via specialized conduits while a functional barrier limits access to the lymphocyte microenvironments in lymph node cortex. J Exp Med 192:1425–1440PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Larsen CG, Anderson AO, Appella E, Oppenheim JJ, Matsushima K (1989) The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Science 243:1464–1466CrossRefPubMedGoogle Scholar
  9. 9.
    Anderson AO, Anderson ND (1976) Lymphocyte emigration from high endothelial venules in rat lymph nodes. Immunology 31:731–748PubMedCentralPubMedGoogle Scholar
  10. 10.
    Cyster JG (2005) Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 23:127–159CrossRefPubMedGoogle Scholar
  11. 11.
    Drayton DL, Liao S, Mounzer RH, Ruddle NH (2006) Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol 7:344–353CrossRefPubMedGoogle Scholar
  12. 12.
    Randolph GJ, Angeli V, Swartz MA (2005) Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 5:617–628CrossRefPubMedGoogle Scholar
  13. 13.
    Cavanagh LL, Von Andrian UH (2002) Travellers in many guises: the origins and destinations of dendritic cells. Immunol Cell Biol 80:448–462CrossRefPubMedGoogle Scholar
  14. 14.
    Scheinecker C, McHugh R, Shevach EM, Germain RN (2002) Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J Exp Med 196:1079–1090PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Steinman RM, Hawiger D, Liu K, Bonifaz L, Bonnyay D, Mahnke K, Iyoda T, Ravetch J, Dhodapkar M, Inaba K, Nussenzweig M (2003) Dendritic cell function in vivo during the steady state: a role in peripheral tolerance. Ann N Y Acad Sci 987:15–25CrossRefPubMedGoogle Scholar
  16. 16.
    Stoitzner P, Tripp CH, Douillard P, Saeland S, Romani N (2005) Migratory Langerhans cells in mouse lymph nodes in steady state and inflammation. J Investig Dermatol 125:116–125CrossRefPubMedGoogle Scholar
  17. 17.
    Wilson NS, El-Sukkari D, Belz GT, Smith CM, Steptoe RJ, Heath WR, Shortman K, Villadangos JA (2003) Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood 102:2187–2194CrossRefPubMedGoogle Scholar
  18. 18.
    Wilson NS, El-Sukkari D, Villadangos JA (2004) Dendritic cells constitutively present self antigens in their immature state in vivo and regulate antigen presentation by controlling the rates of MHC class II synthesis and endocytosis. Blood 103:2187–2195CrossRefPubMedGoogle Scholar
  19. 19.
    Huang FP, Platt N, Wykes M, Major JR, Powell TJ, Jenkins CD, MacPherson GG (2000) A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J Exp Med 191:435–444PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Lee JW, Epardaud M, Sun J, Becker JE, Cheng AC, Yonekura AR, Heath JK, Turley SJ (2007) Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat Immunol 8:181–190CrossRefPubMedGoogle Scholar
  21. 21.
    Nichols LA, Chen Y, Colella TA, Bennett CL, Clausen BE, Engelhard VH (2007) Deletional self-tolerance to a melanocyte/melanoma antigen derived from tyrosinase is mediated by a radio-resistant cell in peripheral and mesenteric lymph nodes. J Immunol 179:993–1003CrossRefPubMedGoogle Scholar
  22. 22.
    Cohen JN, Guidi CJ, Tewalt EF, Qiao H, Rouhani SJ, Ruddell A, Farr AG, Tung KS, Engelhard VH (2010) Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J Exp Med 207:681–688PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Turley SJ, Fletcher AL, Elpek KG (2010) The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs. Nat Rev Immunol 10:813–825CrossRefPubMedGoogle Scholar
  24. 24.
    Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140:460–476CrossRefPubMedGoogle Scholar
  25. 25.
    Angeli V, Ginhoux F, Llodra J, Quemeneur L, Frenette PS, Skobe M, Jessberger R, Merad M, Randolph GJ (2006) B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24:203–215CrossRefPubMedGoogle Scholar
  26. 26.
    Shrestha B, Hashiguchi T, Ito T, Miura N, Takenouchi K, Oyama Y, Kawahara K, Tancharoen S, Ki IY, Arimura N, Yoshinaga N, Noma S, Shrestha C, Nitanda T, Kitajima S, Arimura K, Sato M, Sakamoto T, Maruyama I (2010) B cell-derived vascular endothelial growth factor A promotes lymphangiogenesis and high endothelial venule expansion in lymph nodes. J Immunol 184:4819–4826CrossRefPubMedGoogle Scholar
  27. 27.
    Liao S, Ruddle NH (2006) Synchrony of high endothelial venules and lymphatic vessels revealed by immunization. J Immunol 177:3369–3379CrossRefPubMedGoogle Scholar
  28. 28.
    Kataru RP, Kim H, Jang C, Choi DK, Koh BI, Kim M, Gollamudi S, Kim YK, Lee SH, Koh GY (2011) T lymphocytes negatively regulate lymph node lymphatic vessel formation. Immunity 34:96–107CrossRefPubMedGoogle Scholar
  29. 29.
    Kim KE, Koh YJ, Jeon BH, Jang C, Han J, Kataru RP, Schwendener RA, Kim JM, Koh GY (2009) Role of CD11b+ macrophages in intraperitoneal lipopolysaccharide-induced aberrant lymphangiogenesis and lymphatic function in the diaphragm. Am J Pathol 175:1733–1745PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Kataru RP, Jung K, Jang C, Yang H, Schwendener RA, Baik JE, Han SH, Alitalo K, Koh GY (2009) Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood 113:5650–5659CrossRefPubMedGoogle Scholar
  31. 31.
    Chyou S, Ekland EH, Carpenter AC, Tzeng TC, Tian S, Michaud M, Madri JA, Lu TT (2008) Fibroblast-type reticular stromal cells regulate the lymph node vasculature. J Immunol 181:3887–3896PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Mounzer RH, Svendsen OS, Baluk P, Bergman CM, Padera TP, Wiig H, Jain RK, McDonald DM, Ruddle NH (2010) Lymphotoxin-alpha contributes to lymphangiogenesis. Blood 116:2173–2182PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Halin C, Tobler NE, Vigl B, Brown LF, Detmar M (2007) VEGF-A produced by chronically inflamed tissue induces lymphangiogenesis in draining lymph nodes. Blood 110:3158–3167PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Suzuki Y, Ito Y, Mizuno M, Kinashi H, Sawai A, Noda Y, Mizuno T, Shimizu H, Fujita Y, Matsui K, Maruyama S, Imai E, Matsuo S, Takei Y (2012) Transforming growth factor-beta induces vascular endothelial growth factor-C expression leading to lymphangiogenesis in rat unilateral ureteral obstruction. Kidney Int 81:865–879CrossRefPubMedGoogle Scholar
  35. 35.
    Avraham T, Daluvoy S, Zampell J, Yan A, Haviv YS, Rockson SG, Mehrara BJ (2010) Blockade of transforming growth factor-beta1 accelerates lymphatic regeneration during wound repair. Am J Pathol 177:3202–3214PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Clavin NW, Avraham T, Fernandez J, Daluvoy SV, Soares MA, Chaudhry A, Mehrara BJ (2008) TGF-beta1 is a negative regulator of lymphatic regeneration during wound repair. Am J Physiol Heart Circ Physiol 295:H2113–H2127CrossRefPubMedGoogle Scholar
  37. 37.
    Kerjaschki D, Huttary N, Raab I, Regele H, Bojarski-Nagy K, Bartel G, Krober SM, Greinix H, Rosenmaier A, Karlhofer F, Wick N, Mazal PR (2006) Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med 12:230–234CrossRefPubMedGoogle Scholar
  38. 38.
    Dietrich T, Bock F, Yuen D, Hos D, Bachmann BO, Zahn G, Wiegand S, Chen L, Cursiefen C (2010) Cutting edge: lymphatic vessels, not blood vessels, primarily mediate immune rejections after transplantation. J Immunol 184:535–539CrossRefPubMedGoogle Scholar
  39. 39.
    Kerjaschki D (2005) Lymphatic neoangiogenesis in human neoplasia and transplantation as experiments of nature. Kidney Int 68:1967–1968CrossRefGoogle Scholar
  40. 40.
    Geleff S, Schoppmann SF, Oberhuber G (2003) Increase in podoplanin-expressing intestinal lymphatic vessels in inflammatory bowel disease. Virchows Arch 442:231–237PubMedGoogle Scholar
  41. 41.
    Fogt F, Pascha TL, Zhang PJ, Gausas RE, Rahemtulla A, Zimmerman RL (2004) Proliferation of D2-40-expressing intestinal lymphatic vessels in the lamina propria in inflammatory bowel disease. Int J Mol Med 13:211–214PubMedGoogle Scholar
  42. 42.
    Kaiserling E, Krober S, Geleff S (2003) Lymphatic vessels in the colonic mucosa in ulcerative colitis. Lymphology 36:52–61PubMedGoogle Scholar
  43. 43.
    Pedica F, Ligorio C, Tonelli P, Bartolini S, Baccarini P (2008) Lymphangiogenesis in Crohn’s disease: an immunohistochemical study using monoclonal antibody D2-40. Virchows Arch 452:57–63CrossRefPubMedGoogle Scholar
  44. 44.
    Rahier JF, De Beauce S, Dubuquoy L, Erdual E, Colombel JF, Jouret-Mourin A, Geboes K, Desreumaux P (2011) Increased lymphatic vessel density and lymphangiogenesis in inflammatory bowel disease. Aliment Pharmacol Ther 34:533–543CrossRefPubMedGoogle Scholar
  45. 45.
    Thaunat O, Kerjaschki D, Nicoletti A (2006) Is defective lymphatic drainage a trigger for lymphoid neogenesis? Trends Immunol 27:441–445CrossRefPubMedGoogle Scholar
  46. 46.
    Karkkainen MJ, Saaristo A, Jussila L, Karila KA, Lawrence EC, Pajusola K, Bueler H, Eichmann A, Kauppinen R, Kettunen MI, Yla-Herttuala S, Finegold DN, Ferrell RE, Alitalo K (2001) A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci USA 98:12677–12682PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Karlsen TV, Karkkainen MJ, Alitalo K, Wiig H (2006) Transcapillary fluid balance consequences of missing initial lymphatics studied in a mouse model of primary lymphoedema. J Physiol 574:583–596PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Chaitanya GV, Franks SE, Cromer W, Wells SR, Bienkowska M, Jennings MH, Ruddell A, Ando T, Wang Y, Gu Y, Sapp M, Mathis JM, Jordan PA, Minagar A, Alexander JS (2010) Differential cytokine responses in human and mouse lymphatic endothelial cells to cytokines in vitro. Lymphat Res Biol 8:155–164PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Kerjaschki D (2006) Lymphatic neoangiogenesis in renal transplants: a driving force of chronic rejection? J Nephrol 19:403–406PubMedGoogle Scholar
  50. 50.
    Guo R, Zhou Q, Proulx ST, Wood R, Ji RC, Ritchlin CT, Pytowski B, Zhu Z, Wang YJ, Schwarz EM, Xing L (2009) Inhibition of lymphangiogenesis and lymphatic drainage via vascular endothelial growth factor receptor 3 blockade increases the severity of inflammation in a mouse model of chronic inflammatory arthritis. Arthritis Rheum 60:2666–2676PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Umarova BA, Lelekova TV, Kopylova GN, Goncharova EL, Bakaeva ZV, Samonina GE (2006) The role of protective effects of proline-containing peptides (PGP, PG, and GP) in contractile dysfunction of mesenteric lymphatic vessels in rats with experimental acute peritonitis. Bull Exp Biol Med 142:279–282CrossRefPubMedGoogle Scholar
  52. 52.
    Wu TF, Carati CJ, Macnaughton WK, von der Weid PY (2006) Contractile activity of lymphatic vessels is altered in the TNBS model of guinea pig ileitis. Am J Physiol Gastrointest Liver Physiol 291:G566–G574CrossRefPubMedGoogle Scholar
  53. 53.
    Liao S, Cheng G, Conner DA, Huang Y, Kucherlapati RS, Munn LL, Ruddle NH, Jain RK, Fukumura D, Padera TP (2011) Impaired lymphatic contraction associated with immunosuppression. Proc Natl Acad Sci USA 108:18784–18789PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Gashev AA (2002) Physiologic aspects of lymphatic contractile function: current perspectives. Ann N Y Acad Sci 979:178–187; discussion 188–196CrossRefPubMedGoogle Scholar
  55. 55.
    Davis MJ, Rahbar E, Gashev AA, Zawieja DC, Moore JE Jr (2011) Determinants of valve gating in collecting lymphatic vessels from rat mesentery. Am J Physiol Heart Circ Physiol 301:H48–H60PubMedCentralCrossRefPubMedGoogle Scholar
  56. 56.
    Benoit JN, Zawieja DC (1992) Effects of f-Met-Leu-Phe-induced inflammation on intestinal lymph flow and lymphatic pump behavior. Am J Physiol 262:G199–G202PubMedGoogle Scholar
  57. 57.
    Benoit JN, Zawieja DC, Goodman AH, Granger HJ (1989) Characterization of intact mesenteric lymphatic pump and its responsiveness to acute edemagenic stress. Am J Physiol 257:H2059–H2069PubMedGoogle Scholar
  58. 58.
    Elias RM, Johnston MG, Hayashi A, Nelson W (1987) Decreased lymphatic pumping after intravenous endotoxin administration in sheep. Am J Physiol 253:H1349–H1357PubMedGoogle Scholar
  59. 59.
    Nemoto K, Sato H, Tanuma K, Okamura T (2011) Mesenteric lymph flow in endotoxemic guinea pigs. Lymphat Res Biol 9:129–134CrossRefPubMedGoogle Scholar
  60. 60.
    von der Weid PY (2001) Review article: lymphatic vessel pumping and inflammation—the role of spontaneous constrictions and underlying electrical pacemaker potentials. Aliment Pharmacol Ther 15:1115–1129CrossRefPubMedGoogle Scholar
  61. 61.
    von der Weid PY, Muthuchamy M (2010) Regulatory mechanisms in lymphatic vessel contraction under normal and inflammatory conditions. Pathophysiology 17:263–276CrossRefPubMedGoogle Scholar
  62. 62.
    Davis MJ, Lane MM, Davis AM, Durtschi D, Zawieja DC, Muthuchamy M, Gashev AA (2008) Modulation of lymphatic muscle contractility by the neuropeptide substance P. Am J Physiol Heart Circ Physiol 295:H587–H597PubMedCentralCrossRefPubMedGoogle Scholar
  63. 63.
    Hosaka K, Rayner SE, von der Weid PY, Zhao J, Imtiaz MS, van Helden DF (2006) Calcitonin gene-related peptide activates different signaling pathways in mesenteric lymphatics of guinea pigs. Am J Physiol Heart Circ Physiol 290:H813–H822CrossRefPubMedGoogle Scholar
  64. 64.
    Rayner SE, van Helden DF (1997) Evidence that the substance P-induced enhancement of pacemaking in lymphatics of the guinea-pig mesentery occurs through endothelial release of thromboxane A2. Br J Pharmacol 121:1589–1596PubMedCentralCrossRefPubMedGoogle Scholar
  65. 65.
    von der Weid PY, Rehal S, Dyrda P, Lee S, Mathias R, Rahman M, Roizes S, Imtiaz MS (2012) Mechanisms of VIP-induced inhibition of the lymphatic vessel pump. J Physiol 590:2677–2691PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Ferguson MK, DeFilippi VJ, Reeder LB (1994) Characterization of contractile properties of porcine mesenteric and tracheobronchial lymphatic smooth muscle. Lymphology 27:71–81PubMedGoogle Scholar
  67. 67.
    Gashev AA, Davis MJ, Zawieja DC (2002) Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct. J Physiol 540:1023–1037PubMedCentralCrossRefPubMedGoogle Scholar
  68. 68.
    von der Weid PY, van Helden DF (1996) Beta-adrenoceptor-mediated hyperpolarization in lymphatic smooth muscle of guinea pig mesentery. Am J Physiol 270:H1687–H1695PubMedGoogle Scholar
  69. 69.
    Gasheva OY, Zawieja DC, Gashev AA (2006) Contraction-initiated NO-dependent lymphatic relaxation: a self-regulatory mechanism in rat thoracic duct. J Physiol 575:821–832PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Mizuno R, Koller A, Kaley G (1998) Regulation of the vasomotor activity of lymph microvessels by nitric oxide and prostaglandins. Am J Physiol 274:R790–R796PubMedGoogle Scholar
  71. 71.
    Rehal S, Blanckaert P, Roizes S, von der Weid PY (2009) Characterization of biosynthesis and modes of action of prostaglandin E2 and prostacyclin in guinea pig mesenteric lymphatic vessels. Br J Pharmacol 158:1961–1970PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Elias RM, Johnston MG (1988) Modulation of fluid pumping in isolated bovine mesenteric lymphatics by a thromboxane/endoperoxide analogue. Prostaglandins 36:97–106CrossRefPubMedGoogle Scholar
  73. 73.
    Johnston MG, Kanalec A, Gordon JL (1983) Effects of arachidonic acid and its cyclo-oxygenase and lipoxygenase products on lymphatic vessel contractility in vitro. Prostaglandins 25:85–98CrossRefPubMedGoogle Scholar
  74. 74.
    Johnston MG, Gordon JL (1981) Regulation of lymphatic contractility by arachidonate metabolites. Nature 293:294–297CrossRefPubMedGoogle Scholar
  75. 75.
    Johnston MG, Feuer C (1983) Suppression of lymphatic vessel contractility with inhibitors of arachidonic acid metabolism. J Pharmacol Exp Ther 226:603–607PubMedGoogle Scholar
  76. 76.
    Plaku KJ, von der Weid PY (2006) Mast cell degranulation alters lymphatic contractile activity through action of histamine. Microcirculation 13:219–227CrossRefPubMedGoogle Scholar
  77. 77.
    Mathias R, von der Weid PY (2013) Involvement of the NO–cGMP–KATP channel pathway in the mesenteric lymphatic pump dysfunction observed in the guinea pig model of TNBS-induced ileitis. Am J Physiol Gastrointest Liver Physiol 304:G623–G634CrossRefPubMedGoogle Scholar
  78. 78.
    Cromer WE, Zawieja SD, Tharakan B, Childs EW, Newell MK, Zawieja DC (2013) The effects of inflammatory cytokines on lymphatic endothelial barrier function. Angiogenesis. doi: 10.1007/s10456-013-9393-2
  79. 79.
    Hanley CA, Elias RM, Movat HZ, Johnston MG (1989) Suppression of fluid pumping in isolated bovine mesenteric lymphatics by interleukin-1: interaction with prostaglandin E2. Microvasc Res 37:218–229CrossRefPubMedGoogle Scholar
  80. 80.
    Aldrich MB, Sevick-Muraca EM (2013) Cytokines are systemic effectors of lymphatic function in acute inflammation. Cytokine 64:362–369CrossRefPubMedGoogle Scholar
  81. 81.
    Arai F, Mizuno R, Ohhashi T (2000) Effects of VEGF on Ca(2+)-transient in cultured lymphatic endothelial cells and mechanical activity of isolated lymph vessels. Jpn J Physiol 50:343–355CrossRefPubMedGoogle Scholar
  82. 82.
    Breslin JW, Gaudreault N, Watson KD, Reynoso R, Yuan SY, Wu MH (2007) Vascular endothelial growth factor-C stimulates the lymphatic pump by a VEGF receptor-3-dependent mechanism. Am J Physiol Heart Circ Physiol 293:H709–H718CrossRefPubMedGoogle Scholar
  83. 83.
    Vigl B, Aebischer D, Nitschke M, Iolyeva M, Rothlin T, Antsiferova O, Halin C (2011) Tissue inflammation modulates gene expression of lymphatic endothelial cells and dendritic cell migration in a stimulus-dependent manner. Blood 118:205–215CrossRefPubMedGoogle Scholar
  84. 84.
    Platt AM, Rutkowski JM, Martel C, Kuan EL, Ivanov S, Swartz MA, Randolph GJ (2013) Normal dendritic cell mobilization to lymph nodes under conditions of severe lymphatic hypoplasia. J Immunol 190:4608–4620CrossRefPubMedGoogle Scholar
  85. 85.
    Sigalet DL, Martin G (1999) Lymphatic absorption of glucose and fatty acids as determined by direct measurement. J Pediatr Surg 34:39–43CrossRefPubMedGoogle Scholar
  86. 86.
    Berk DA, Swartz MA, Leu AJ, Jain RK (1996) Transport in lymphatic capillaries. II. Microscopic velocity measurement with fluorescence photobleaching. Am J Physiol 270:H330–H337PubMedGoogle Scholar
  87. 87.
    Fischer M, Costanzo U, Hoffmann U, Bollinger A, Franzeck UK (1997) Flow velocity of cutaneous lymphatic capillaries in patients with primary lymphedema. Int J Microcirc Clin Exp 17:143–149CrossRefPubMedGoogle Scholar
  88. 88.
    Fischer M, Franzeck UK, Herrig I, Costanzo U, Wen S, Schiesser M, Hoffmann U, Bollinger A (1996) Flow velocity of single lymphatic capillaries in human skin. Am J Physiol 270:H358–H363PubMedGoogle Scholar
  89. 89.
    Swartz MA, Berk DA, Jain RK (1996) Transport in lymphatic capillaries. I. Macroscopic measurements using residence time distribution theory. Am J Physiol 270:H324–H329PubMedGoogle Scholar
  90. 90.
    Mieog JS, Troyan SL, Hutteman M, Donohoe KJ, van der Vorst JR, Stockdale A, Liefers GJ, Choi HS, Gibbs-Strauss SL, Putter H, Gioux S, Kuppen PJ, Ashitate Y, Lowik CW, Smit VT, Oketokoun R, Ngo LH, van de Velde CJ, Frangioni JV, Vahrmeijer AL (2011) Toward optimization of imaging system and lymphatic tracer for near-infrared fluorescent sentinel lymph node mapping in breast cancer. Ann Surg Oncol 18:2483–2491PubMedCentralCrossRefPubMedGoogle Scholar
  91. 91.
    Sevick-Muraca EM (2012) Translation of near-infrared fluorescence imaging technologies: emerging clinical applications. Annu Rev Med 63:217–231CrossRefPubMedGoogle Scholar
  92. 92.
    Havas E, Parviainen T, Vuorela J, Toivanen J, Nikula T, Vihko V (1997) Lymph flow dynamics in exercising human skeletal muscle as detected by scintography. J Physiol 504(Pt 1):233–239PubMedCentralCrossRefPubMedGoogle Scholar
  93. 93.
    Witte CL, Witte MH, Unger EC, Williams WH, Bernas MJ, McNeill GC, Stazzone AM (2000) Advances in imaging of lymph flow disorders. Radiographics 20:1697–1719CrossRefPubMedGoogle Scholar
  94. 94.
    Dixon JB, Gashev AA, Zawieja DC, Moore JE Jr, Cote GL (2007) Image correlation algorithm for measuring lymphocyte velocity and diameter changes in contracting microlymphatics. Ann Biomed Eng 35:387–396PubMedCentralCrossRefPubMedGoogle Scholar
  95. 95.
    Dixon JB, Greiner ST, Gashev AA, Cote GL, Moore JE, Zawieja DC (2006) Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics. Microcirculation 13:597–610CrossRefPubMedGoogle Scholar
  96. 96.
    Hoke D, Mebius RE, Dybdal N, Dowbenko D, Gribling P, Kyle C, Baumhueter S, Watson SR (1995) Selective modulation of the expression of L-selectin ligands by an immune response. Curr Biol 5:670–678CrossRefPubMedGoogle Scholar
  97. 97.
    Mebius RE, Breve J, Duijvestijn AM, Kraal G (1990) The function of high endothelial venules in mouse lymph nodes stimulated by oxazolone. Immunology 71:423–427PubMedCentralPubMedGoogle Scholar
  98. 98.
    Mebius RE, Dowbenko D, Williams A, Fennie C, Lasky LA, Watson SR (1993) Expression of GlyCAM-1, an endothelial ligand for L-selectin, is affected by afferent lymphatic flow. J Immunol 151:6769–6776PubMedGoogle Scholar
  99. 99.
    Mueller SN, Hosiawa-Meagher KA, Konieczny BT, Sullivan BM, Bachmann MF, Locksley RM, Ahmed R, Matloubian M (2007) Regulation of homeostatic chemokine expression and cell trafficking during immune responses. Science 317:670–674CrossRefPubMedGoogle Scholar
  100. 100.
    Paavonen K, Mandelin J, Partanen T, Jussila L, Li TF, Ristimaki A, Alitalo K, Konttinen YT (2002) Vascular endothelial growth factors C and D and their VEGFR-2 and 3 receptors in blood and lymphatic vessels in healthy and arthritic synovium. J Rheumatol 29:39–45PubMedGoogle Scholar
  101. 101.
    Alitalo A, Detmar M (2012) Interaction of tumor cells and lymphatic vessels in cancer progression. Oncogene 31:4499–4508CrossRefPubMedGoogle Scholar
  102. 102.
    Qian CN, Berghuis B, Tsarfaty G, Bruch M, Kort EJ, Ditlev J, Tsarfaty I, Hudson E, Jackson DG, Petillo D, Chen J, Resau JH, Teh BT (2006) Preparing the “soil”: the primary tumor induces vasculature reorganization in the sentinel lymph node before the arrival of metastatic cancer cells. Cancer Res 66:10365–10376CrossRefPubMedGoogle Scholar
  103. 103.
    Padera TP, Kuo AH, Hoshida T, Liao S, Lobo J, Kozak KR, Fukumura D, Jain RK (2008) Differential response of primary tumor versus lymphatic metastasis to VEGFR-2 and VEGFR-3 kinase inhibitors cediranib and vandetanib. Mol Cancer Ther 7:2272–2279PubMedCentralCrossRefPubMedGoogle Scholar
  104. 104.
    Veronesi U, Paganelli G, Viale G, Luini A, Zurrida S, Galimberti V, Intra M, Veronesi P, Robertson C, Maisonneuve P, Renne G, De Cicco C, De Lucia F, Gennari R (2003) A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer. N Engl J Med 349:546–553CrossRefPubMedGoogle Scholar
  105. 105.
    Morton DL, Thompson JF, Cochran AJ, Mozzillo N, Elashoff R, Essner R, Nieweg OE, Roses DF, Hoekstra HJ, Karakousis CP, Reintgen DS, Coventry BJ, Glass EC, Wang HJ (2006) Sentinel-node biopsy or nodal observation in melanoma. N Engl J Med 355:1307–1317CrossRefPubMedGoogle Scholar
  106. 106.
    Martinet L, Garrido I, Filleron T, Le Guellec S, Bellard E, Fournie JJ, Rochaix P, Girard JP (2011) Human solid tumors contain high endothelial venules: association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer Res 71:5678–5687CrossRefPubMedGoogle Scholar
  107. 107.
    Hindley JP, Jones E, Smart K, Bridgeman H, Lauder SN, Ondondo B, Cutting S, Ladell K, Wynn KK, Withers D, Price DA, Ager A, Godkin AJ, Gallimore AM (2012) T-cell trafficking facilitated by high endothelial venules is required for tumor control after regulatory T-cell depletion. Cancer Res 72:5473–5482PubMedCentralCrossRefPubMedGoogle Scholar
  108. 108.
    Schrama D, thor Straten P, Fischer WH, McLellan AD, Brocker EB, Reisfeld RA, Becker JC (2001) Targeting of lymphotoxin-alpha to the tumor elicits an efficient immune response associated with induction of peripheral lymphoid-like tissue. Immunity 14:111–121CrossRefPubMedGoogle Scholar
  109. 109.
    Yu P, Lee Y, Liu W, Chin RK, Wang J, Wang Y, Schietinger A, Philip M, Schreiber H, Fu YX (2004) Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol 5:141–149CrossRefPubMedGoogle Scholar
  110. 110.
    Shields JD, Kourtis IC, Tomei AA, Roberts JM, Swartz MA (2010) Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328:749–752CrossRefPubMedGoogle Scholar
  111. 111.
    Swartz MA, Lund AW (2012) Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer 12:210–219CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Inflammation Research NetworkSnyder Institute for Chronic DiseasesCalgaryCanada
  2. 2.Department of Microbiology, Immunology and Infectious diseasesUniversity of CalgaryCalgaryCanada
  3. 3.Department of Physiology and Pharmacology, Faculty of MedicineUniversity of CalgaryCalgaryCanada

Personalised recommendations