, Volume 17, Issue 1, pp 77–91 | Cite as

The heparan sulfate editing enzyme Sulf1 plays a novel role in zebrafish VegfA mediated arterial venous identity

  • Bushra Gorsi
  • Feng Liu
  • Xing Ma
  • Timothy J. A. Chico
  • Ashok Shrinivasan
  • Kenneth L. Kramer
  • Esther Bridges
  • Rui Monteiro
  • Adrian L. Harris
  • Roger Patient
  • Sally E. Stringer
Original Paper


Arterial and venous specification is critical for establishing and maintaining a functioning vascular system, and defects in key arteriovenous signaling pathways including VEGF (vascular endothelial growth factor) lead to congenital arteriopathies. The activities of VEGF, are in part controlled by heparan sulfate (HS) proteoglycans, significant components of the endothelial glycocalyx. The level of 6-O sulfation on HS polysaccharide chains, that mediate the interaction between HS and VEGFA, is edited at the cell surface by the enzyme SULF1. We investigated the role of sulf1 in vascular development. In zebrafish sulf1 is expressed in the head and tail vasculature, corresponding spatially and temporally with vascular development. Targeted knockdown of sulf1 by antisense morpholinos resulted in severe vascular patterning and maturation defects. 93 % of sulf1 morphants show dysmorphogenesis in arterial development leading to occlusion of the distal aorta and lack of axial and cranial circulation. Co-injection of vegfa165 mRNA rescued circulatory defects. While the genes affecting haematopoiesis are unchanged, expression of several arterial markers downstream of VegfA signalling such as notch and ephrinB2 are severely reduced in the dorsal aorta, with a concomitant increase in expression of the venous markers flt4 in the dorsal aorta of the morphants. Furthermore, in vitro, lack of SULF1 expression downregulates VEGFA-mediated arterial marker expression, confirming that Sulf1 mediates arterial specification by regulating VegfA165 activity. This study provides the first in vivo evidence for the integral role of the endothelial glycocalyx in specifying arterial-venous identity, vascular patterning and arterial integrity, and will help to better understand congenital arteriopathies.


Angiogenesis Arteries VEGF Glycocalyx Sulf1 

Supplementary material

10456_2013_9379_MOESM1_ESM.pptx (47.4 mb)
Supplementary material 1 (PPTX 48497 kb)


  1. 1.
    Adams RH, Klein R (2000) Eph receptors and ephrin ligands: essential mediators of vascular development. Trends Cardiovasc Med 10(5):183–188PubMedCrossRefGoogle Scholar
  2. 2.
    Hirashima M, Suda T (2006) Differentiation of arterial and venous endothelial cells and vascular morphogenesis. Endothelium 13(2):137–145PubMedCrossRefGoogle Scholar
  3. 3.
    Irrthum A et al (2003) Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. Am J Hum Genet 72(6):1470–1478PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Carmeliet P et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439PubMedCrossRefGoogle Scholar
  5. 5.
    Olsson AK et al (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7(5):359–371PubMedCrossRefGoogle Scholar
  6. 6.
    Lawson ND, Vogel AM, Weinstein BM (2002) Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell 3(1):127–136PubMedCrossRefGoogle Scholar
  7. 7.
    Lawson ND et al (2001) Notch signalling is required for arterial-venous differentiation during embryonic vascular development. Development 128(19):3675–3683PubMedGoogle Scholar
  8. 8.
    Ashikari-Hada S et al (2005) Heparin regulates vascular endothelial growth factor(165)-dependent mitogenic activity, tube formation, and its receptor phosphorylation of human endothelial cells—comparison of the effects of heparin and modified heparins. J Biol Chem 280(36):31508PubMedCrossRefGoogle Scholar
  9. 9.
    Jakobsson L et al (2006) Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis. Dev Cell 10(5):625–634PubMedCrossRefGoogle Scholar
  10. 10.
    Ruhrberg C et al (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16(20):2684–2698PubMedCrossRefGoogle Scholar
  11. 11.
    Chen E et al (2005) A unique role for 6-O sulfation modification in zebrafish vascular development. Dev Biol 284(2):364–376PubMedCrossRefGoogle Scholar
  12. 12.
    Frese MA, Milz F, Dick M, Lamanna WC, Dierks T (2009) Characterization of the human sulfatase Sulf1 and its high affinity heparin/heparan sulfate interaction domain. J Biol Chem 284:28033–28044Google Scholar
  13. 13.
    Gorsi B, Stringer SE (2007) Tinkering with heparan sulfate sulfation to steer development. Trends Cell Biol 17(4):173–177PubMedCrossRefGoogle Scholar
  14. 14.
    Narita K et al (2006) HSulf-1 inhibits angiogenesis and tumorigenesis in vivo. Cancer Res 66(12):6025–6032PubMedCrossRefGoogle Scholar
  15. 15.
    Wang S et al (2004) QSulf1, a heparan sulfate 6-O-endosulfatase, inhibits fibroblast growth factor signaling in mesoderm induction and angiogenesis. Proc Natl Acad Sci USA 101(14):4833–4838PubMedCrossRefGoogle Scholar
  16. 16.
    Kleinschmit A et al (2010) Drosophila heparan sulfate 6-O endosulfatase regulates Wingless morphogen gradient formation. Dev Biol 345(2):204–214PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Viviano BL et al (2004) Domain-specific modification of heparan sulfate by Qsulf1 modulates the binding of the bone morphogenetic protein antagonist Noggin. J Biol Chem 279(7):5604–5611PubMedCrossRefGoogle Scholar
  18. 18.
    Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248(2):307–318PubMedCrossRefGoogle Scholar
  19. 19.
    Jin SW et al (2005) Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132(23):5199–5209PubMedCrossRefGoogle Scholar
  20. 20.
    Traver D et al (2003) Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol 4(12):1238–1246PubMedCrossRefGoogle Scholar
  21. 21.
    Kimmel CB et al (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203(3):253–310PubMedCrossRefGoogle Scholar
  22. 22.
    Westerfield M et al (1997) An on-line database for zebrafish development and genetics research. Semin Cell Dev Biol 8(5):477–488PubMedCrossRefGoogle Scholar
  23. 23.
    Bateman A et al (2000) The Pfam protein families database. Nucleic Acids Res 28(1):263–266PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Jowett T, Lettice L (1994) Whole-mount in situ hybridizations on zebrafish embryos using a mixture of digoxigenin- and fluorescein-labelled probes. Trends Genet 10(3):73–74PubMedCrossRefGoogle Scholar
  25. 25.
    Isogai S, Horiguchi M, Weinstein BM (2001) The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Dev Biol 230(2):278–301PubMedCrossRefGoogle Scholar
  26. 26.
    Dierks T et al (1999) Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases. EMBO J 18(8):2084–2091PubMedCrossRefGoogle Scholar
  27. 27.
    von Figura K et al (1998) A novel protein modification generating an aldehyde group in sulfatases: its role in catalysis and disease. BioEssays 20(6):505–510CrossRefGoogle Scholar
  28. 28.
    Ambasta RK, Ai X, Emerson CP Jr (2007) Quail Sulf1 function requires asparagine-linked glycosylation. J Biol Chem 282(47):34492–34499PubMedCrossRefGoogle Scholar
  29. 29.
    Gorsi B, Whelan S, Stringer SE (2010) Dynamic expression patterns of 6-O endosulfatases during zebrafish development suggest a subfunctionalisation event for sulf2. Dev Dyn 239(12):3312–3323PubMedCrossRefGoogle Scholar
  30. 30.
    Morcos PA (2007) Achieving targeted and quantifiable alteration of mRNA splicing with Morpholino oligos. Biochem Biophys Res Commun 358(2):521–527PubMedCrossRefGoogle Scholar
  31. 31.
    Ekker SC, Larson JD (2001) Morphant technology in model developmental systems. Genesis 30(3):89–93PubMedCrossRefGoogle Scholar
  32. 32.
    Robu ME et al (2007) p53 activation by knockdown technologies. PLoS Genet 3(5):e78PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Berghmans T et al (2005) Prognostic role of p53 in stage III non-small cell lung cancer. Anticancer Res 25(3c):2385–2389PubMedGoogle Scholar
  34. 34.
    Ai X et al (2007) SULF1 and SULF2 regulate heparan sulfate-mediated GDNF signaling for esophageal innervation. Development 134(18):3327–3338PubMedCrossRefGoogle Scholar
  35. 35.
    Lamanna WC et al (2006) Heparan sulfate 6-O-endosulfatases: discrete in vivo activities and functional co-operativity. Biochem J 400(1):63–73PubMedCrossRefGoogle Scholar
  36. 36.
    Ai X et al (2006) Substrate specificity and domain functions of extracellular heparan sulfate 6-O-endosulfatases, QSulf1 and QSulf2. J Biol Chem 281(8):4969–4976PubMedCrossRefGoogle Scholar
  37. 37.
    Bink RJ et al (2003) Heparan sulfate 6-o-sulfotransferase is essential for muscle development in zebrafish. J Biol Chem 278(33):31118–31127PubMedCrossRefGoogle Scholar
  38. 38.
    Huang CC et al (2003) reg6 is required for branching morphogenesis during blood vessel regeneration in zebrafish caudal fins. Dev Biol 264(1):263–274PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Habuchi H et al (2007) Mice deficient in heparan sulfate 6-O-sulfotransferase-1 exhibit defective heparan sulfate biosynthesis, abnormal placentation, and late embryonic lethality. J Biol Chem 282(21):15578–15588PubMedCrossRefGoogle Scholar
  40. 40.
    Ratzka A et al (2008) Redundant function of the heparan sulfate 6-O-endosulfatases Sulf1 and Sulf2 during skeletal development. Dev Dyn 237(2):339–353PubMedCrossRefGoogle Scholar
  41. 41.
    Covassin LD et al (2009) A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development. Dev Biol 329(2):212–226PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Covassin LD et al (2006) Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. Proc Natl Acad Sci USA 103(17):6554–6559PubMedCrossRefGoogle Scholar
  43. 43.
    Lawson ND et al (2003) Phospholipase C gamma-1 is required downstream of vascular endothelial growth factor during arterial development. Genes Dev 17(11):1346–1351PubMedCrossRefGoogle Scholar
  44. 44.
    Nasevicius A, Larson J, Ekker SC (2000) Distinct requirements for zebrafish angiogenesis revealed by a VEGF-A morphant. Yeast 17(4):294–301PubMedCrossRefGoogle Scholar
  45. 45.
    Ober EA et al (2004) Vegfc is required for vascular development and endoderm morphogenesis in zebrafish. EMBO Rep 5(1):78–84PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Cermenati S et al (2008) Sox18 and Sox7 play redundant roles in vascular development. Blood 111(5):2657–2666PubMedCrossRefGoogle Scholar
  47. 47.
    Herpers R et al (2008) Redundant roles for sox7 and sox18 in arteriovenous specification in zebrafish. Circ Res 102(1):12–15PubMedCrossRefGoogle Scholar
  48. 48.
    Pendeville H et al (2008) Zebrafish Sox7 and Sox18 function together to control arterial-venous identity. Dev Biol 317(2):405–416PubMedCrossRefGoogle Scholar
  49. 49.
    Robinson CJ et al (2006) VEGF165-binding sites within heparan sulfate encompass two highly sulfated domains and can be liberated by K5 lyase. J Biol Chem 281(3):1731–1740PubMedCrossRefGoogle Scholar
  50. 50.
    Stalmans I et al (2002) Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest 109(3):327–336PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Bushra Gorsi
    • 1
    • 8
  • Feng Liu
    • 2
  • Xing Ma
    • 3
  • Timothy J. A. Chico
    • 4
  • Ashok Shrinivasan
    • 5
  • Kenneth L. Kramer
    • 5
  • Esther Bridges
    • 6
  • Rui Monteiro
    • 6
  • Adrian L. Harris
    • 6
  • Roger Patient
    • 6
  • Sally E. Stringer
    • 7
  1. 1.Cardiovascular Medicine, Faculty of Medical and Human SciencesUniversity of ManchesterManchesterUK
  2. 2.State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of ZoologyChinese Academy of SciencesBeijingChina
  3. 3.MRC Centre for Developmental and Biomedical GeneticsUniversity of SheffieldSheffieldUK
  4. 4.Department of Cardiovascular Science, MRC Centre for Developmental and Biomedical GeneticsUniversity of SheffieldSheffieldUK
  5. 5.National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaUSA
  6. 6.Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
  7. 7.Faculty of Medical and Human Sciences, Institute of Cardiovascular SciencesUniversity of ManchesterManchesterUK
  8. 8.Department of Neurobiology and Anatomy, Eccles Institute of Human GeneticsUniversity of Utah Molecular Medicine ProgramSalt Lake CityUSA

Personalised recommendations