, Volume 16, Issue 4, pp 921–937 | Cite as

Inhibition of Notch signaling induces extensive intussusceptive neo-angiogenesis by recruitment of mononuclear cells

  • Ivanka Dimova
  • Ruslan Hlushchuk
  • Andrew Makanya
  • Beata Styp-Rekowska
  • Amalia Ceausu
  • Stefanie Flueckiger
  • Sonja Lang
  • David Semela
  • Ferdinand Le Noble
  • Suvro Chatterjee
  • Valentin DjonovEmail author
Original Paper


Notch is an intercellular signaling pathway related mainly to sprouting neo-angiogenesis. The objective of our study was to evaluate the angiogenic mechanisms involved in the vascular augmentation (sprouting/intussusception) after Notch inhibition within perfused vascular beds using the chick area vasculosa and MxCreNotch1(lox/lox) mice. In vivo monitoring combined with morphological investigations demonstrated that inhibition of Notch signaling within perfused vascular beds remarkably induced intussusceptive angiogenesis (IA) with resultant dense immature capillary plexuses. The latter were characterized by 40 % increase in vascular density, pericyte detachment, enhanced vessel permeability, as well as recruitment and extravasation of mononuclear cells into the incipient transluminal pillars (quintessence of IA). Combination of Notch inhibition with injection of bone marrow-derived mononuclear cells dramatically enhanced IA with 80 % increase in vascular density and pillar number augmentation by 420 %. Additionally, there was down-regulation of ephrinB2 mRNA levels consequent to Notch inhibition. Inhibition of ephrinB2 or EphB4 signaling induced some pericyte detachment and resulted in up-regulation of VEGFRs but with neither an angiogenic response nor recruitment of mononuclear cells. Notably, Tie-2 receptor was down-regulated, and the chemotactic factors SDF-1/CXCR4 were up-regulated only due to the Notch inhibition. Disruption of Notch signaling at the fronts of developing vessels generally results in massive sprouting. On the contrary, in the already existing vascular beds, down-regulation of Notch signaling triggered rapid augmentation of the vasculature predominantly by IA. Notch inhibition disturbed vessel stability and led to pericyte detachment followed by extravasation of mononuclear cells. The mononuclear cells contributed to formation of transluminal pillars with sustained IA resulting in a dense vascular plexus without concomitant vascular remodeling and maturation.


Angiogenesis Molecular regulation of intussusceptive angiogenesis Notch signaling EphrinB2/EphB4 SDF-1/CXCR4 



We are very grateful to Regula Buergy, Werner Graber, Jeannine Wagner, Barbara Krieger, Christoph Lehmann, and Brigitte Scolari for the wonderful laboratory work and technical support! This work is supported by the Swiss National Foundation Grant Nr: 31003A_135740.

Supplementary material

10456_2013_9366_MOESM1_ESM.tif (4.2 mb)
Supplementary material Estimation of vascular permeability by lectin/Hoechst staining 24 h after PBS treatment (control), Notch, ephrinB2, and EphB4 inhibition. (TIFF 4290 kb)


  1. 1.
    Ribatti D, Crivellato E (2012) “Sprouting angiogenesis”, a reappraisal. Dev Biol 372(2):157–165PubMedCrossRefGoogle Scholar
  2. 2.
    Djonov V, Schmid M, Tschanz SA, Burri PH (2000) Intussusceptive angiogenesis: its role in embryonic vascular network formation. Circ Res 86(3):286–292PubMedCrossRefGoogle Scholar
  3. 3.
    Djonov V, Baum O, Burri PH (2003) Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res 314(1):107–117PubMedCrossRefGoogle Scholar
  4. 4.
    Jakobsson L, Franco CA, Bentley K, Collins RT, Ponsioen B, Aspalter IM, Rosewell I, Busse M, Thurston G, Medvinsky A, Schulte-Merker S, Gerhardt H (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12(10):943–953PubMedCrossRefGoogle Scholar
  5. 5.
    Makanya AN, Hlushchuk R, Djonov VG (2009) Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis 12(2):113–123PubMedCrossRefGoogle Scholar
  6. 6.
    Styp-Rekowska B, Hlushchuk R, Pries AR, Djonov V (2011) Intussusceptive angiogenesis: pillars against the blood flow. Acta Physiol (Oxf) 202(3):213–223CrossRefGoogle Scholar
  7. 7.
    Dill MT, Rothweiler S, Djonov V, Hlushchuk R, Tornillo L, Terracciano L, Meili-Butz S, Radtke F, Heim MH, Semela D (2012) Disruption of Notch1 induces vascular remodeling, intussusceptive angiogenesis, and angiosarcomas in livers of mice. Gastroenterology 142(4):967–977PubMedCrossRefGoogle Scholar
  8. 8.
    Baum O, Suter F, Gerber B, Tschanz SA, Buergy R, Blank F, Hlushchuk R, Djonov V (2010) VEGF-A promotes intussusceptive angiogenesis in the developing chicken chorioallantoic membrane. Microcirculation 17(6):447–457PubMedGoogle Scholar
  9. 9.
    Konerding MA, Gibney BC, Houdek JP, Chamoto K, Ackermann M, Lee GS, Lin M, Tsuda A, Mentzer SJ (2012) Spatial dependence of alveolar angiogenesis in post-pneumonectomy lung growth. Angiogenesis 15(1):23–32PubMedCrossRefGoogle Scholar
  10. 10.
    Schwanbeck R, Martini S, Bernoth K, Just U (2011) The Notch signaling pathway: molecular basis of cell context dependency. Eur J Cell Biol 90(6–7):572–581PubMedCrossRefGoogle Scholar
  11. 11.
    High FA, Zhang M, Proweller A, Tu L, Parmacek MS, Pear WS, Epstein JA (2007) An essential role for Notch in neural crest during cardiovascular development and smooth muscle differentiation. J Clin Invest 117(2):353–363PubMedCrossRefGoogle Scholar
  12. 12.
    Napp LC, Augustynik M, Paesler F, Krishnasamy K, Woiterski J, Limbourg A, Bauersachs J, Drexler H, Le NF, Limbourg FP (2012) Extrinsic Notch ligand delta-like 1 regulates tip cell selection and vascular branching morphogenesis. Circ Res 110(4):530–535PubMedCrossRefGoogle Scholar
  13. 13.
    Tammela T, Zarkada G, Nurmi H, Jakobsson L, Heinolainen K, Tvorogov D, Zheng W, Franco CA, Murtomaki A, Aranda E, Miura N, Yla-Herttuala S, Fruttiger M, Makinen T, Eichmann A, Pollard JW, Gerhardt H, Alitalo K (2011) VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol 13(10):1202–1213PubMedCrossRefGoogle Scholar
  14. 14.
    Suchting S, Freitas C, Le NF, Benedito R, Breant C, Duarte A, Eichmann A (2007) The Notch ligand delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci USA 104(9):3225–3230PubMedCrossRefGoogle Scholar
  15. 15.
    Roca C, Adams RH (2007) Regulation of vascular morphogenesis by Notch signaling. Genes Dev 21(20):2511–2524PubMedCrossRefGoogle Scholar
  16. 16.
    Corada M, Nyqvist D, Orsenigo F, Caprini A, Giampietro C, Taketo MM, Iruela-Arispe ML, Adams RH, Dejana E (2010) The Wnt/beta-catenin pathway modulates vascular remodeling and specification by upregulating Dll4/Notch signaling. Dev Cell 18(6):938–949PubMedCrossRefGoogle Scholar
  17. 17.
    MacGrogan D, Nus M, de la Pompa JL (2010) Notch signaling in cardiac development and disease. Curr Top Dev Biol 92:333–365PubMedCrossRefGoogle Scholar
  18. 18.
    Gridley T (2010) Notch signaling in the vasculature. Curr Top Dev Biol 92:277–309PubMedCrossRefGoogle Scholar
  19. 19.
    Lobov IB, Cheung E, Wudali R, Cao J, Halasz G, Wei Y, Economides A, Lin HC, Papadopoulos N, Yancopoulos GD, Wiegand SJ (2011) The Dll4/Notch pathway controls postangiogenic blood vessel remodeling and regression by modulating vasoconstriction and blood flow. Blood 117(24):6728–6737PubMedCrossRefGoogle Scholar
  20. 20.
    Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97(6):512–523PubMedCrossRefGoogle Scholar
  21. 21.
    Sainson RC, Harris AL (2008) Regulation of angiogenesis by homotypic and heterotypic notch signalling in endothelial cells and pericytes: from basic research to potential therapies. Angiogenesis 11(1):41–51PubMedCrossRefGoogle Scholar
  22. 22.
    Scheppke L, Murphy EA, Zarpellon A, Hofmann JJ, Merkulova A, Shields DJ, Weis SM, Byzova TV, Ruggeri ZM, Iruela-Arispe ML, Cheresh DA (2012) Notch promotes vascular maturation by inducing integrin-mediated smooth muscle cell adhesion to the endothelial basement membrane. Blood 119(9):2149–2158PubMedCrossRefGoogle Scholar
  23. 23.
    Liu H, Kennard S, Lilly B (2009) NOTCH3 expression is induced in mural cells through an autoregulatory loop that requires endothelial-expressed JAGGED1. Circ Res 104(4):466–475PubMedCrossRefGoogle Scholar
  24. 24.
    Egea J, Klein R (2007) Bidirectional Eph-ephrin signaling during axon guidance. Trends Cell Biol 17(5):230–238PubMedCrossRefGoogle Scholar
  25. 25.
    Himanen JP, Saha N, Nikolov DB (2007) Cell-cell signaling via Eph receptors and ephrins. Curr Opin Cell Biol 19(5):534–542PubMedCrossRefGoogle Scholar
  26. 26.
    Masumura T, Yamamoto K, Shimizu N, Obi S, Ando J (2009) Shear stress increases expression of the arterial endothelial marker ephrinB2 in murine ES cells via the VEGF-Notch signaling pathways. Arterioscler Thromb Vasc Biol 29(12):2125–2131PubMedCrossRefGoogle Scholar
  27. 27.
    Sato Y, Watanabe T, Saito D, Takahashi T, Yoshida S, Kohyama J, Ohata E, Okano H, Takahashi Y (2008) Notch mediates the segmental specification of angioblasts in somites and their directed migration toward the dorsal aorta in avian embryos. Dev Cell 14(6):890–901PubMedCrossRefGoogle Scholar
  28. 28.
    Krebs LT, Starling C, Chervonsky AV, Gridley T (2010) Notch1 activation in mice causes arteriovenous malformations phenocopied by ephrinB2 and EphB4 mutants. Genesis 48(3):146–150PubMedGoogle Scholar
  29. 29.
    Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe ML, Kalen M, Gerhardt H, Betsholtz C (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129):776–780PubMedCrossRefGoogle Scholar
  30. 30.
    Noguera-Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW, Lin HC, Yancopoulos GD, Thurston G (2007) Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Novartis Found Symp 283:106–120PubMedCrossRefGoogle Scholar
  31. 31.
    Ridgway J, Zhang G, Wu Y, Stawicki S, Liang WC, Chanthery Y, Kowalski J, Watts RJ, Callahan C, Kasman I, Singh M, Chien M, Tan C, Hongo JA, de Sauvage F, Plowman G, Yan M (2006) Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444(7122):1083–1087PubMedCrossRefGoogle Scholar
  32. 32.
    Al Haj ZA, Oikawa A, Bazan-Peregrino M, Meloni M, Emanueli C, Madeddu P (2010) Inhibition of delta-like-4-mediated signaling impairs reparative angiogenesis after ischemia. Circ Res 107(2):283–293CrossRefGoogle Scholar
  33. 33.
    Benedito R, Rocha SF, Woeste M, Zamykal M, Radtke F, Casanovas O, Duarte A, Pytowski B, Adams RH (2012) Notch-dependent VEGFR3 upregulation allows angiogenesis without VEGF–VEGFR2 signalling. Nature 484(7392):110–114PubMedCrossRefGoogle Scholar
  34. 34.
    Wnuk M, Hlushchuk R, Janot M, Tuffin G, Martiny-Baron G, Holzer P, Imbach-Weese P, Djonov V, Huynh-Do U (2012) Podocyte EphB4 signaling helps recovery from glomerular injury. Kidney Int 81(12):1212–1225PubMedCrossRefGoogle Scholar
  35. 35.
    Djonov VG, Kurz H, Burri PH (2002) Optimality in the developing vascular system: branching remodeling by means of intussusception as an efficient adaptation mechanism. Dev Dyn 224:391–402PubMedCrossRefGoogle Scholar
  36. 36.
    Jenkins DW, Ross S, Veldman-Jones M, Foltz IN, Clavette BC, Manchulenko K, Eberlein C, Kendrew J, Petteruti P, Cho S, Damschroder M, Peng L, Baker D, Smith NR, Weir HM, Blakey DC, Bedian V, Barry ST (2012) MEDI0639: a novel therapeutic antibody targeting Dll4 modulates endothelial cell function and angiogenesis in vivo. Mol Cancer Ther 11(8):1650–1660PubMedCrossRefGoogle Scholar
  37. 37.
    Thurston G, Noguera-Troise I, Yancopoulos GD (2007) The delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nat Rev Cancer 7(5):327–331PubMedCrossRefGoogle Scholar
  38. 38.
    Kalen M, Heikura T, Karvinen H, Nitzsche A, Weber H, Esser N, Yla-Herttuala S, Hellstrom M (2011) Gamma-secretase inhibitor treatment promotes VEGF-A-driven blood vessel growth and vascular leakage but disrupts neovascular perfusion. PLoS ONE 6(4):e18709PubMedCrossRefGoogle Scholar
  39. 39.
    Larrivee B, Prahst C, Gordon E, Del TR, Mathivet T, Duarte A, Simons M, Eichmann A (2012) ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev Cell 22(3):489–500PubMedCrossRefGoogle Scholar
  40. 40.
    Hlushchuk R, Riesterer O, Baum O, Wood J, Gruber G, Pruschy M, Djonov V (2008) Tumor recovery by angiogenic switch from sprouting to intussusceptive angiogenesis after treatment with PTK787/ZK222584 or ionizing radiation. Am J Pathol 173(4):1173–1185PubMedCrossRefGoogle Scholar
  41. 41.
    Wnuk M, Hlushchuk R, Tuffin G, Huynh-Do U, Djonov V (2011) The effects of PTK787/ZK222584, an inhibitor of VEGFR and PDGFRbeta pathways, on intussusceptive angiogenesis and glomerular recovery from Thy1.1 nephritis. Am J Pathol 178(4):1899–1912PubMedCrossRefGoogle Scholar
  42. 42.
    Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, Ratajczak MZ (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 20(5):857–869PubMedCrossRefGoogle Scholar
  43. 43.
    Usui F, Yamamoto Y, Nakamura Y, Ono T, Kagami H (2009) Novel system for degeneration of blood vessels by UV irradiation and subsequent regeneration using chick bone marrow cells. Cells Tissues Organs 189(5):348–355PubMedCrossRefGoogle Scholar
  44. 44.
    Lorusso G, Ruegg C (2008) The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem Cell Biol 130(6):1091–1103PubMedCrossRefGoogle Scholar
  45. 45.
    Coffelt SB, Lewis CE, Naldini L, Brown JM, Ferrara N, De PM (2010) Elusive identities and overlapping phenotypes of proangiogenic myeloid cells in tumors. Am J Pathol 176(4):1564–1576PubMedCrossRefGoogle Scholar
  46. 46.
    Camelo S, Raoul W, Lavalette S, Calippe B, Cristofaro B, Levy O, Houssier M, Sulpice E, Jonet L, Klein C, Devevre E, Thuret G, Duarte A, Eichmann A, Leconte L, Guillonneau X, Sennlaub F (2012) Delta-like 4 inhibits choroidal neovascularization despite opposing effects on vascular endothelium and macrophages. Angiogenesis 15(4):609–622PubMedCrossRefGoogle Scholar
  47. 47.
    Lawson ND, Scheer N, Pham VN, Kim CH, Chitnis AB, Campos-Ortega JA, Weinstein BM (2001) Notch signaling is required for arterial–venous differentiation during embryonic vascular development. Development 128(19):3675–3683PubMedGoogle Scholar
  48. 48.
    Fischer A, Schumacher N, Maier M, Sendtner M, Gessler M (2004) The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev 18(8):901–911PubMedCrossRefGoogle Scholar
  49. 49.
    Jin S, Hansson EM, Tikka S, Lanner F, Sahlgren C, Farnebo F, Baumann M, Kalimo H, Lendahl U (2008) Notch signaling regulates platelet-derived growth factor receptor-beta expression in vascular smooth muscle cells. Circ Res 102(12):1483–1491PubMedCrossRefGoogle Scholar
  50. 50.
    Cortina C, Palomo-Ponce S, Iglesias M, Fernandez-Masip JL, Vivancos A, Whissell G, Huma M, Peiro N, Gallego L, Jonkheer S, Davy A, Lloreta J, Sancho E, Batlle E (2007) EphB-ephrin-B interactions suppress colorectal cancer progression by compartmentalizing tumor cells. Nat Genet 39(11):1376–1383PubMedCrossRefGoogle Scholar
  51. 51.
    Noren NK, Pasquale EB (2007) Paradoxes of the EphB4 receptor in cancer. Cancer Res 67(9):3994–3997PubMedCrossRefGoogle Scholar
  52. 52.
    Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376(6535):70–74PubMedCrossRefGoogle Scholar
  53. 53.
    Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87(7):1171–1180PubMedCrossRefGoogle Scholar
  54. 54.
    Morrow D, Cullen JP, Cahill PA, Redmond EM (2007) Cyclic strain regulates the Notch/CBF-1 signaling pathway in endothelial cells: role in angiogenic activity. Arterioscler Thromb Vasc Biol 27(6):1289–1296PubMedCrossRefGoogle Scholar
  55. 55.
    Salvucci O, Yao L, Villalba S, Sajewicz A, Pittaluga S, Tosato G (2002) Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1. Blood 99(8):2703–2711PubMedCrossRefGoogle Scholar
  56. 56.
    Williams CK, Segarra M, Sierra ML, Sainson RC, Tosato G, Harris AL (2008) Regulation of CXCR4 by the Notch ligand delta-like 4 in endothelial cells. Cancer Res 68(6):1889–1895PubMedCrossRefGoogle Scholar
  57. 57.
    Wragg A, Mellad JA, Beltran LE, Konoplyannikov M, San H, Boozer S, Deans RJ, Mathur A, Lederman RJ, Kovacic JC, Boehm M (2008) VEGFR1/CXCR4-positive progenitor cells modulate local inflammation and augment tissue perfusion by a SDF-1-dependent mechanism. J Mol Med (Berl) 86(11):1221–1232CrossRefGoogle Scholar
  58. 58.
    Arras M, Ito WD, Scholz D, Winkler B, Schaper J, Schaper W (1998) Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest 101(1):40–50PubMedCrossRefGoogle Scholar
  59. 59.
    De PM, Venneri MA, Galli R, Sergi SL, Politi LS, Sampaolesi M, Naldini L (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8(3):211–226CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ivanka Dimova
    • 1
    • 2
  • Ruslan Hlushchuk
    • 1
    • 2
  • Andrew Makanya
    • 1
    • 2
  • Beata Styp-Rekowska
    • 1
    • 2
  • Amalia Ceausu
    • 1
    • 3
  • Stefanie Flueckiger
    • 1
    • 4
  • Sonja Lang
    • 1
    • 2
  • David Semela
    • 5
  • Ferdinand Le Noble
    • 6
  • Suvro Chatterjee
    • 7
  • Valentin Djonov
    • 1
    • 2
    Email author
  1. 1.Institute of AnatomyUniversity of FribourgFribourgSwitzerland
  2. 2.Institute of AnatomyUniversity of BernBern 9Switzerland
  3. 3.“Victor Babes” University of Medicine and PharmacyTimisoaraRomania
  4. 4.Institute of Molecular Health SciencesETH ZurichZurichSwitzerland
  5. 5.Department of BiomedicineUniversity Hospital Basel & KantonsspitalSt. GallenSwitzerland
  6. 6.Max Delbrück Center for Molecular MedicineBerlinGermany
  7. 7.Vascular Biology Lab, AU-KBC Research CentreAnna UniversityChennaiIndia

Personalised recommendations