Advertisement

Angiogenesis

, Volume 16, Issue 4, pp 759–772 | Cite as

Endothelial FoxO1 is an intrinsic regulator of thrombospondin 1 expression that restrains angiogenesis in ischemic muscle

  • Emilie Roudier
  • Malgorzata Milkiewicz
  • Olivier Birot
  • Dara Slopack
  • Andreas Montelius
  • Thomas Gustafsson
  • Ji Hye Paik
  • Ronald A. DePinho
  • George P. Casale
  • Iraklis I. Pipinos
  • Tara L. Haas
Original Paper

Abstract

Peripheral artery disease (PAD) is characterized by chronic muscle ischemia. Compensatory angiogenesis is minimal within ischemic muscle despite an increase in angiogenic factors. This may occur due to the prevalence of angiostatic factors. Regulatory mechanisms that could evoke an angiostatic environment during ischemia are largely unknown. Forkhead box O (FoxO) transcription factors, known to repress endothelial cell proliferation in vitro, are potential candidates. Our goal was to determine whether FoxO proteins promote an angiostatic phenotype within ischemic muscle. FoxO1 and the angiostatic matrix protein thrombospondin 1 (THBS1) were elevated in ischemic muscle from PAD patients, or from mice post-femoral artery ligation. Mice with conditional endothelial cell-directed deletion of FoxO proteins (Mx1Cre +, FoxO1,3,4 L/L , referred to as FoxOΔ) were used to assess the role of endothelial FoxO proteins within ischemic tissue. FoxO deletion abrogated the elevation of FoxO1 and THBS1 proteins, enhanced hindlimb blood flow recovery and improved neovascularization in murine ischemic muscle. Endothelial cell outgrowth from 3D explant cultures was more robust in muscles derived from FoxOΔ mice. FoxO1 overexpression induced THBS1 production, and a direct interaction of endogenous FoxO1 with the THBS1 promoter was detectable in primary endothelial cells. We provide evidence that FoxO1 directly regulates THBS1 within ischemic muscle. Altogether, these findings bring novel insight into the regulatory mechanisms underlying the repression of angiogenesis within peripheral ischemic tissues.

Keywords

Endothelium Ischemia Angiogenesis Peripheral artery disease Skeletal muscle Capillary 

Abbreviations

PAD

Peripheral artery disease

THBS1

Thrombospondin 1

FoxO

Forkhead box O

C:F

Capillary to muscle fiber ratio

Notes

Acknowledgments

We appreciate the technical assistance of Ms. Justyna Kopycinska and Mr. Emmanuel Nwadozi with animal surgeries and imaging, and Mr. Sammy Liu with endothelial cell isolations. This research was supported by the Canadian Institutes of Health Research (IMH-107537 to T.L.H.), the Heart and Stroke Foundation of Canada (NA7059 to T.L.H.) and the National Institutes of Health Grant (R01 AG034995 to I.P.).

Conflict of interest

None.

Supplementary material

10456_2013_9353_MOESM1_ESM.tif (7.6 mb)
Supplementary material 1 (TIFF 7,732 kb)
10456_2013_9353_MOESM2_ESM.tif (5.6 mb)
Supplementary material 2 (TIFF 5,722 kb)
10456_2013_9353_MOESM3_ESM.tif (16.1 mb)
Supplementary material 3 (TIFF 16,487 kb)
10456_2013_9353_MOESM4_ESM.tif (12.1 mb)
Supplementary material 4 (TIFF 12,387 kb)
10456_2013_9353_MOESM5_ESM.docx (15 kb)
Supplementary material 5 (DOCX 14 kb)

References

  1. 1.
    Criqui MH, Fronek A, Klauber MR, Barrettconnor E, Gabriel S (1985) The sensitivity, specificity, and predictive value of traditional clinical-evaluation of peripheral arterial-disease: results from noninvasive testing in A defined population. Circulation 71:516–522PubMedCrossRefGoogle Scholar
  2. 2.
    Criqui MH (2001) Peripheral arterial disease: epidemiological aspects. Vasc Med 6:3–7PubMedCrossRefGoogle Scholar
  3. 3.
    Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, Hiratzka LF, Murphy WRC, Olin JW, Puschett JB, Rosenfield KA, Sacks D, Stanley JC, Taylor LM, White CJ, White J, White RA, Antman EM, Smith SC, Adams CD, Anderson JL, Faxon DP, Fuster V, Gibbons RJ, Halperin JL, Hiratzka LF, Hunt SA, Jacobs AK, Nishimura R, Ornato JP, Page RL, Riegel B (2006) ACC/AHA 2005 guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): executive summary. J Am Coll Cardiol 47:1239–1312PubMedCrossRefGoogle Scholar
  4. 4.
    Henriksson J, Nygaard E, Andersson J, Eklof B (1980) Enzyme activities, fibre types and capillarization in calf muscles of patients with intermittent claudication. Scand J Clin Lab Invest 40:361–369PubMedCrossRefGoogle Scholar
  5. 5.
    Jansson E, Johansson J, Sylven C, Kaijser L (1988) Calf muscle adaptation in intermittent claudication. Side-differences in muscle metabolic characteristics in patients with unilateral arterial disease. Clin Physiol 8:17–29PubMedCrossRefGoogle Scholar
  6. 6.
    Robbins JL, Jones WS, Duscha BD, Allen JD, Kraus WE, Regensteiner JG, Hiatt WR, Annex BH (2011) Relationship between leg muscle capillary density and peak hyperemic blood flow with endurance capacity in peripheral artery disease. J Appl Physiol 111:81–86PubMedCrossRefGoogle Scholar
  7. 7.
    Jones WS, Duscha BD, Robbins JL, Duggan NN, Regensteiner JG, Kraus WE, Hiatt WR, Dokun AO, Annex BH (2012) Alteration in angiogenic and anti-angiogenic forms of vascular endothelial growth factor-A in skeletal muscle of patients with intermittent claudication following exercise training. Vasc Med 17:94–100PubMedCrossRefGoogle Scholar
  8. 8.
    Askew CD, Green S, Walker PJ, Kerr GK, Green AA, Williams AD, Febbraio MA (2005) Skeletal muscle phenotype is associated with exercise tolerance in patients with peripheral arterial disease. J Vasc Surg 41:802–807PubMedCrossRefGoogle Scholar
  9. 9.
    Duscha BD, Robbins JL, Jones WS, Kraus WE, Lye RJ, Sanders JM, Allen JD, Regensteiner JG, Hiatt WR, Annex BH (2011) Angiogenesis in skeletal muscle precede improvements in peak oxygen uptake in peripheral artery disease patients. Arterioscler Thromb Vasc Biol 31:2742–2748PubMedCrossRefGoogle Scholar
  10. 10.
    Milkiewicz M, Roudier E, Doyle JL, Trifonova A, Birot O, Haas TL (2011) Identification of a mechanism underlying regulation of the anti-angiogenic forkhead transcription factor FoxO1 in cultured endothelial cells and ischemic muscle. Am J Pathol 178:935–944PubMedCrossRefGoogle Scholar
  11. 11.
    Hanafusa H, Torii S, Yasunaga T, Nishida E (2002) Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol 4:850–858PubMedCrossRefGoogle Scholar
  12. 12.
    Salih DA, Brunet A (2008) FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol 20:126–136PubMedCrossRefGoogle Scholar
  13. 13.
    Fu Z, Tindall DJ (2008) FOXOs, cancer and regulation of apoptosis. Oncogene 27:2312–2319PubMedCrossRefGoogle Scholar
  14. 14.
    Sengupta A, Molkentin JD, Paik JH, DePinho RA, Yutzey KE (2011) FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J Biol Chem 286:7468–7478PubMedCrossRefGoogle Scholar
  15. 15.
    Hosaka T, Biggs WH III, Tieu D, Boyer AD, Varki NM, Cavenee WK, Arden KC (2004) Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci USA 101:2975–2980PubMedCrossRefGoogle Scholar
  16. 16.
    Furuyama T, Kitayama K, Shimoda Y, Ogawa M, Sone K, Yoshida-Araki K, Hisatsune H, Nishikawa S, Nakayama K, Nakayama K, Ikeda K, Motoyama N, Mori N (2004) Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. J Biol Chem 279:34741–34749PubMedCrossRefGoogle Scholar
  17. 17.
    Sengupta A, Chakraborty S, Paik J, Yutzey KE, Evans-Anderson HJ (2012) FoxO1 is required in endothelial but not myocardial cell lineages during cardiovascular development. Dev Dyn 241:803–813PubMedCrossRefGoogle Scholar
  18. 18.
    Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z, Miao L, Tothova Z, Horner JW, Carrasco DR, Jiang S, Gilliland DG, Chin L, Wong WH, Castrillon DH, DePinho RA (2007) FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128:309–323PubMedCrossRefGoogle Scholar
  19. 19.
    Dejana E, Taddei A, Randi AM (2007) Foxs and Ets in the transcriptional regulation of endothelial cell differentiation and angiogenesis. Biochim Biophys Acta 1775:298–312PubMedGoogle Scholar
  20. 20.
    Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FGR (2007) Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg 45:S5–S67PubMedCrossRefGoogle Scholar
  21. 21.
    Kuhn R, Schwenk F, Aguet M, Rajewsky K (1995) Inducible gene targeting in mice. Science 269:1427–1429PubMedCrossRefGoogle Scholar
  22. 22.
    Roudier E, Forn P, Perry ME, Birot O (2012) Murine double minute-2 expression is required for capillary maintenance and exercise-induced angiogenesis in skeletal muscle. FASEB J 26:4530–4539PubMedCrossRefGoogle Scholar
  23. 23.
    Potente M, Urbich C, Sasaki K, Hofmann WK, Heeschen C, Aicher A, Kollipara R, DePinho RA, Zeiher AM, Dimmeler S (2005) Involvement of FoxO transcription factors in angiogenesis and postnatal neovascularization. J Clin Invest 115:2382–2392PubMedCrossRefGoogle Scholar
  24. 24.
    Hayashi M, Kim SW, Imanaka-Yoshida K, Yoshida T, Abel ED, Eliceiri B, Yang Y, Ulevitch RJ, Lee JD (2004) Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure. J Clin Invest 113:1138–1148PubMedGoogle Scholar
  25. 25.
    Dijkers PF, Medema RH, Pals C, Banerji L, Thomas NS, Lam EWF, Burgering BMT, Raaijmakers JAM, Lammers JW, Koenderman L, Coffer PJ (2000) Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27KIP1. Mol Cell Biol 20:9138–9148PubMedCrossRefGoogle Scholar
  26. 26.
    Lees SJ, Childs TE, Booth FW (2008) Age-dependent FOXO regulation of p27Kip1 expression via a conserved binding motif in rat muscle precursor cells. Am J Physiol Cell Physiol 295:C1238–C1246PubMedCrossRefGoogle Scholar
  27. 27.
    Daly C, Wong V, Burova E, Wei Y, Zabski S, Griffiths J, Lai KM, Lin HC, Ioffe E, Yancopoulos GD, Rudge JS (2004) Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription factor FKHR (FOXO1). Genes Dev 18:1060–1071PubMedCrossRefGoogle Scholar
  28. 28.
    Chen H, Herndon ME, Lawler J (2000) The cell biology of thrombospondin-1. Matrix Biol 19:597–614PubMedCrossRefGoogle Scholar
  29. 29.
    Armstrong LC, Bornstein P (2003) Thrombospondins 1 and 2 function as inhibitors of angiogenesis. Matrix Biol 22:63–71PubMedCrossRefGoogle Scholar
  30. 30.
    Iruela-Arispe ML, Luque A, Lee N (2004) Thrombospondin modules and angiogenesis. Int J Biochem Cell Biol 36:1070–1078PubMedCrossRefGoogle Scholar
  31. 31.
    Favier J, Germain S, Emmerich J, Corvol P, Gasc JM (2005) Critical overexpression of thrombospondin 1 in chronic leg ischaemia. J Pathol 207:358–366PubMedCrossRefGoogle Scholar
  32. 32.
    Smadja DM, d’Audigier C, Bièche I, Evrard S, Mauge L, Dias JV, Labreuche J, Laurendeau I, Marsac B, Dizier B, Wagner-Ballon O, Boisson-Vidal C, Morandi V, Duong-Van-Huyen JP, Bruneval P, Dignat-George F, Emmerich J, Gaussem P (2011) Thrombospondin-1 Is a plasmatic marker of peripheral arterial disease that modulates endothelial progenitor cell angiogenic properties. Arterioscler Thromb Vasc Biol 31:551–559PubMedCrossRefGoogle Scholar
  33. 33.
    Brechot N, Gomez E, Bignon M, Khallou-Laschet J, Dussiot M, Cazes A, Alanio-Brechot C, Durand M, Philippe J, Silvestre JS, Van Rooijen N, Corvol P, Nicoletti A, Chazaud B, Germain S (2008) Modulation of macrophage activation state protects tissue from necrosis during critical limb ischemia in thrombospondin-1-deficient mice. PLoS One 3:e3950PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Emilie Roudier
    • 1
  • Malgorzata Milkiewicz
    • 2
  • Olivier Birot
    • 1
  • Dara Slopack
    • 1
  • Andreas Montelius
    • 3
  • Thomas Gustafsson
    • 3
  • Ji Hye Paik
    • 4
  • Ronald A. DePinho
    • 5
  • George P. Casale
    • 6
  • Iraklis I. Pipinos
    • 6
  • Tara L. Haas
    • 1
  1. 1.Angiogenesis Research Group, Faculty of HealthYork UniversityTorontoCanada
  2. 2.Medical Biology LaboratoryPomeranian Medical UniversitySzczecinPoland
  3. 3.Division of Clinical Physiology, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
  4. 4.Department of Pathology and Laboratory MedicineWeill Cornell CollegeNew YorkUSA
  5. 5.Department of Cancer BiologyUniversity of Texas MD Anderson Cancer CenterHoustonUSA
  6. 6.Department of SurgeryUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations