, Volume 16, Issue 3, pp 525–540 | Cite as

Non-invasive dynamic near-infrared imaging and quantification of vascular leakage in vivo

  • Steven T. Proulx
  • Paola Luciani
  • Annamari Alitalo
  • Viviane Mumprecht
  • Ailsa J. Christiansen
  • Reto Huggenberger
  • Jean-Christophe Leroux
  • Michael Detmar
Original Paper


Preclinical vascular research has been hindered by a lack of methods that can sensitively image and quantify vascular perfusion and leakage in vivo. In this study, we have developed dynamic near-infrared imaging methods to repeatedly visualize and quantify vascular leakage in mouse skin in vivo, and we have applied these methods to transgenic mice with overexpression of vascular endothelial growth factors VEGF-A or -C. Near-infrared dye conjugates were developed to identify a suitable vascular tracer that had a prolonged circulation lifetime and slow leakage into normal tissue after intravenous injection. Dynamic simultaneous imaging of ear skin and a large blood vessel in the leg enabled determination of the intravascular signal (blood volume fraction) from the tissue signal shortly after injection and quantifications of vascular leakage into the extravascular tissue over time. This method allowed for the sensitive detection of increased blood vascularity and leakage rates in K14-VEGF-A transgenic mice and also reliably measured inflammation-induced changes of vascularity and leakage over time in the same mice. Measurements after injection of recombinant VEGF-A surprisingly revealed increased blood vascular leakage and lymphatic clearance in K14-VEGF-C transgenic mice which have an expanded cutaneous lymphatic vessel network, potentially indicating unanticipated effects of lymphatic drainage on vascular leakage. Increased vascular leakage was also detected in subcutaneous tumors, confirming that the method can also be applied to deeper tissues. This new imaging method might facilitate longitudinal investigations of the in vivo effects of drug candidates, including angiogenesis inhibitors, in preclinical disease models.


Vascular permeability Inflammation Imaging VEGF-A VEGF-C 



The authors would like to thank Carlos Ochoa for assistance with animal care and Sinem Karaman and Alexandra Ochsenbein for technical assistance. This work was supported by a Whitaker International Scholar grant (to S.T.P.); National Institutes of Health grant CA69184, Swiss National Science Foundation grants 3100A0-108207 and 31003A-130627, Commission of the European Communities grant LSHC-CT-2005-518178, Advanced European Research Council grant LYVICAM, Oncosuisse and Krebsliga Zurich (to M.D.).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10456_2013_9332_MOESM1_ESM.tif (148 kb)
Supplementary material 1 (TIFF 149 kb)
10456_2013_9332_MOESM2_ESM.tif (926 kb)
Supplementary material 2 (TIFF 926 kb)
10456_2013_9332_MOESM3_ESM.tif (888 kb)
Supplementary material 3 (TIFF 889 kb)
10456_2013_9332_MOESM4_ESM.tif (1.5 mb)
Supplementary material 4 (TIFF 1568 kb)
10456_2013_9332_MOESM5_ESM.tif (3.6 mb)
Supplementary material 5 (TIFF 3647 kb)
10456_2013_9332_MOESM6_ESM.tif (196 kb)
Supplementary material 6 (TIFF 197 kb)
10456_2013_9332_MOESM7_ESM.tif (197 kb)
Supplementary material 7 (TIFF 198 kb)
10456_2013_9332_MOESM8_ESM.tif (259 kb)
Supplementary material 8 (TIFF 260 kb)
10456_2013_9332_MOESM9_ESM.tif (2.3 mb)
Supplementary material 9 (TIFF 2353 kb)
10456_2013_9332_MOESM10_ESM.doc (78 kb)
Supplementary material 10 (DOC 78 kb)
10456_2013_9332_MOESM11_ESM.mpg (7.6 mb)
Supplementary material 11 (MPG 7734 kb)
10456_2013_9332_MOESM12_ESM.mpg (7.6 mb)
Supplementary material 12 (MPG 7735 kb)
10456_2013_9332_MOESM13_ESM.mpg (7.3 mb)
Supplementary material 13 (MPG 7450 kb)
10456_2013_9332_MOESM14_ESM.mpg (7.3 mb)
Supplementary material 14 (MPG 7444 kb)
10456_2013_9332_MOESM15_ESM.mpg (5 mb)
Supplementary material 15 (MPG 5100 kb)


  1. 1.
    Yuan SY, Rigor RR (2010) In: Regulation of Endothelial Barrier Function. Integrated Systems Physiology: From Molecule to Function to Disease. San Rafael,CAGoogle Scholar
  2. 2.
    Levick JR, Michel CC (2010) Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res 87(2):198–210. doi: 10.1093/cvr/cvq062 PubMedCrossRefGoogle Scholar
  3. 3.
    Scallan J, Huxley VH, Korthuis RJ (2010). In: Capillary fluid exchange: regulation, functions, and pathology. Integrated systems physiology: from molecule to function to disease. San Rafael, CAGoogle Scholar
  4. 4.
    Nagy JA, Dvorak AM, Dvorak HF (2007) VEGF-A and the induction of pathological angiogenesis. Annu Rev Pathol 2:251–275. doi: 10.1146/annurev.pathol.2.010506.134925 PubMedCrossRefGoogle Scholar
  5. 5.
    Dejana E, Tournier-Lasserve E, Weinstein BM (2009) The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 16(2):209–221. doi: 10.1016/j.devcel.2009.01.004 PubMedCrossRefGoogle Scholar
  6. 6.
    Miles AA, Miles EM (1952) Vascular reactions to histamine, histamine-liberator and leukotaxine in the skin of guinea-pigs. J Physiol 118(2):228–257PubMedGoogle Scholar
  7. 7.
    Nagy JA, Benjamin L, Zeng H, Dvorak AM, Dvorak HF (2008) Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis 11(2):109–119. doi: 10.1007/s10456-008-9099-z PubMedCrossRefGoogle Scholar
  8. 8.
    Bates DO (2010) Vascular endothelial growth factors and vascular permeability. Cardiovasc Res 87(2):262–271. doi: 10.1093/cvr/cvq105 PubMedCrossRefGoogle Scholar
  9. 9.
    Curry FR, Adamson RH (2010) Vascular permeability modulation at the cell, microvessel, or whole organ level: towards closing gaps in our knowledge. Cardiovasc Res 87(2):218–229. doi: 10.1093/cvr/cvq115 PubMedCrossRefGoogle Scholar
  10. 10.
    Kenne E, Lindbom L (2011) Imaging inflammatory plasma leakage in vivo. Thromb Haemost 105(5):783–789. doi: 10.1160/TH10-10-0635 PubMedCrossRefGoogle Scholar
  11. 11.
    Neeman M, Dafni H (2003) Structural, functional, and molecular MR imaging of the microvasculature. Annu Rev Biomed Eng 5:29–56. doi: 10.1146/annurev.bioeng.5.040202.121606 PubMedCrossRefGoogle Scholar
  12. 12.
    Mulder WJ, Griffioen AW (2010) Imaging of angiogenesis. Angiogenesis 13(2):71–74. doi: 10.1007/s10456-010-9178-9 PubMedCrossRefGoogle Scholar
  13. 13.
    Dreher MR, Liu W, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A (2006) Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98(5):335–344. doi: 10.1093/jnci/djj070 PubMedCrossRefGoogle Scholar
  14. 14.
    Vandoorne K, Addadi Y, Neeman M (2010) Visualizing vascular permeability and lymphatic drainage using labeled serum albumin. Angiogenesis 13(2):75–85. doi: 10.1007/s10456-010-9170-4 PubMedCrossRefGoogle Scholar
  15. 15.
    Hilderbrand SA, Weissleder R (2010) Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin Chem Biol 14(1):71–79. doi: 10.1016/j.cbpa.2009.09.029 PubMedCrossRefGoogle Scholar
  16. 16.
    Cherrick GR, Stein SW, Leevy CM, Davidson CS (1960) Indocyanine green: observations on its physical properties, plasma decay, and hepatic extraction. J Clin Invest 39:592–600. doi: 10.1172/JCI104072 PubMedCrossRefGoogle Scholar
  17. 17.
    Jeltsch M, Kaipainen A, Joukov V, Meng X, Lakso M, Rauvala H, Swartz M, Fukumura D, Jain RK, Alitalo K (1997) Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276(5317):1423–1425PubMedCrossRefGoogle Scholar
  18. 18.
    Xia YP, Li B, Hylton D, Detmar M, Yancopoulos GD, Rudge JS (2003) Transgenic delivery of VEGF to mouse skin leads to an inflammatory condition resembling human psoriasis. Blood 102(1):161–168. doi: 10.1182/blood-2002-12-3793 PubMedCrossRefGoogle Scholar
  19. 19.
    Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, McDonald DM (1999) Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286(5449):2511–2514PubMedCrossRefGoogle Scholar
  20. 20.
    Wyatt SK, Manning HC, Bai M, Bailey SN, Gallant P, Ma G, McIntosh L, Bornhop DJ (2010) Molecular imaging of the translocator protein (TSPO) in a pre-clinical model of breast cancer. Mol Imaging Biol 12(3):349–358. doi: 10.1007/s11307-009-0270-8 PubMedCrossRefGoogle Scholar
  21. 21.
    Ott P, Keiding S, Bass L (1993) Plasma elimination of indocyanine green in the intact pig after bolus injection and during constant infusion: comparison of spectrophotometry and high-pressure liquid chromatography for concentration analysis. Hepatology 18(6):1504–1515. doi: 10.1002/hep.1840180633 PubMedGoogle Scholar
  22. 22.
    Kunstfeld R, Hirakawa S, Hong YK, Schacht V, Lange-Asschenfeldt B, Velasco P, Lin C, Fiebiger E, Wei X, Wu Y, Hicklin D, Bohlen P, Detmar M (2004) Induction of cutaneous delayed-type hypersensitivity reactions in VEGF-A transgenic mice results in chronic skin inflammation associated with persistent lymphatic hyperplasia. Blood 104(4):1048–1057. doi: 10.1182/blood-2003-08-2964 PubMedCrossRefGoogle Scholar
  23. 23.
    Detmar M, Brown LF, Schon MP, Elicker BM, Velasco P, Richard L, Fukumura D, Monsky W, Claffey KP, Jain RK (1998) Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol 111(1):1–6. doi: 10.1046/j.1523-1747.1998.00262.x PubMedCrossRefGoogle Scholar
  24. 24.
    Halin C, Detmar M (2008) Chapter 1. Inflammation, angiogenesis, and lymphangiogenesis. Methods Enzymol 445:1–25. doi: 10.1016/S0076-6879(08)03001-2 PubMedCrossRefGoogle Scholar
  25. 25.
    Dafni H, Landsman L, Schechter B, Kohen F, Neeman M (2002) MRI and fluorescence microscopy of the acute vascular response to VEGF165: vasodilation, hyper-permeability and lymphatic uptake, followed by rapid inactivation of the growth factor. NMR Biomed 15(2):120–131PubMedCrossRefGoogle Scholar
  26. 26.
    Lohela M, Helotera H, Haiko P, Dumont DJ, Alitalo K (2008) Transgenic induction of vascular endothelial growth factor-C is strongly angiogenic in mouse embryos but leads to persistent lymphatic hyperplasia in adult tissues. Am J Pathol 173(6):1891–1901. doi: 10.2353/ajpath.2008.080378 PubMedCrossRefGoogle Scholar
  27. 27.
    Huggenberger R, Siddiqui SS, Brander D, Ullmann S, Zimmermann K, Antsiferova M, Werner S, Alitalo K, Detmar M (2011) An important role of lymphatic vessel activation in limiting acute inflammation. Blood 117(17):4667–4678. doi: 10.1182/blood-2010-10-316356 PubMedCrossRefGoogle Scholar
  28. 28.
    Krynyckyi BR, Kim CK, Goyenechea MR, Chan PT, Zhang ZY, Machac J (2004) Clinical breast lymphoscintigraphy: optimal techniques for performing studies, image atlas, and analysis of images. Radiographics 24 (1):121–145; discussion 139–145. doi: 10.1148/rg.241025713 Google Scholar
  29. 29.
    Karlsen TV, McCormack E, Mujic M, Tenstad O, Wiig H (2011) Minimally-invasive quantification of lymph flow in mice and rats by imaging depot clearance of near-infrared albumin. Am J Physiol Heart Circ Physiol. doi: 10.1152/ajpheart.00842.2011 PubMedGoogle Scholar
  30. 30.
    Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476. doi: 10.1016/j.cell.2010.01.045 PubMedCrossRefGoogle Scholar
  31. 31.
    Joukov V, Kumar V, Sorsa T, Arighi E, Weich H, Saksela O, Alitalo K (1998) A recombinant mutant vascular endothelial growth factor-C that has lost vascular endothelial growth factor receptor-2 binding, activation, and vascular permeability activities. J Biol Chem 273(12):6599–6602PubMedCrossRefGoogle Scholar
  32. 32.
    Saxena V, Sadoqi M, Shao J (2003) Degradation kinetics of indocyanine green in aqueous solution. J Pharm Sci 92(10):2090–2097. doi: 10.1002/jps.10470 PubMedCrossRefGoogle Scholar
  33. 33.
    Troyan SL, Kianzad V, Gibbs-Strauss SL, Gioux S, Matsui A, Oketokoun R, Ngo L, Khamene A, Azar F, Frangioni JV (2009) The FLARE intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann Surg Oncol 16(10):2943–2952. doi: 10.1245/s10434-009-0594-2 PubMedCrossRefGoogle Scholar
  34. 34.
    Marshall MV, Draney D, Sevick-Muraca EM, Olive DM (2010) Single-dose intravenous toxicity study of IRDye 800CW in Sprague-Dawley rats. Mol Imaging Biol 12(6):583–594. doi: 10.1007/s11307-010-0317-x PubMedCrossRefGoogle Scholar
  35. 35.
    Sandanaraj BS, Gremlich HU, Kneuer R, Dawson J, Wacha S (2010) Fluorescent nanoprobes as a biomarker for increased vascular permeability: implications in diagnosis and treatment of cancer and inflammation. Bioconjug Chem 21(1):93–101. doi: 10.1021/bc900311h PubMedCrossRefGoogle Scholar
  36. 36.
    Proulx ST, Luciani P, Derzsi S, Rinderknecht M, Mumprecht V, Leroux JC, Detmar M (2010) Quantitative imaging of lymphatic function with liposomal indocyanine green. Cancer Res 70(18):7053–7062. doi: 10.1158/0008-5472.CAN-10-0271 PubMedCrossRefGoogle Scholar
  37. 37.
    Greenwald RB, Choe YH, McGuire J, Conover CD (2003) Effective drug delivery by PEGylated drug conjugates. Adv Drug Deliv Rev 55(2):217–250PubMedCrossRefGoogle Scholar
  38. 38.
    Fox ME, Szoka FC, Frechet JM (2009) Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc Chem Res 42(8):1141–1151. doi: 10.1021/ar900035f PubMedCrossRefGoogle Scholar
  39. 39.
    Huggenberger R, Ullmann S, Proulx ST, Pytowski B, Alitalo K, Detmar M (2010) Stimulation of lymphangiogenesis via VEGFR-3 inhibits chronic skin inflammation. J Exp Med 207(10):2255–2269. doi: 10.1084/jem.20100559 PubMedCrossRefGoogle Scholar
  40. 40.
    Zhou Q, Guo R, Wood R, Boyce BF, Liang Q, Wang YJ, Schwarz EM, Xing L (2011) Vascular endothelial growth factor C attenuates joint damage in chronic inflammatory arthritis by accelerating local lymphatic drainage in mice. Arthritis Rheum 63(8):2318–2328. doi: 10.1002/art.30421 PubMedCrossRefGoogle Scholar
  41. 41.
    Saaristo A, Tammela T, Farkkila A, Karkkainen M, Suominen E, Yla-Herttuala S, Alitalo K (2006) Vascular endothelial growth factor-C accelerates diabetic wound healing. Am J Pathol 169(3):1080–1087. doi: 10.2353/ajpath.2006.051251 PubMedCrossRefGoogle Scholar
  42. 42.
    Baluk P, Tammela T, Ator E, Lyubynska N, Achen MG, Hicklin DJ, Jeltsch M, Petrova TV, Pytowski B, Stacker SA, Yla-Herttuala S, Jackson DG, Alitalo K, McDonald DM (2005) Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest 115(2):247–257. doi: 10.1172/JCI22037 PubMedGoogle Scholar
  43. 43.
    Proulx ST, Kwok E, You Z, Beck CA, Shealy DJ, Ritchlin CT, Boyce BF, Xing L, Schwarz EM (2007) MRI and quantification of draining lymph node function in inflammatory arthritis. Ann N Y Acad Sci 1117:106–123. doi: 10.1196/annals.1402.016 PubMedCrossRefGoogle Scholar
  44. 44.
    Greish K (2007) Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target 15(7–8):457–464. doi: 10.1080/10611860701539584 PubMedCrossRefGoogle Scholar
  45. 45.
    Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7(11):653–664. doi: 10.1038/nrclinonc.2010.139 PubMedCrossRefGoogle Scholar
  46. 46.
    Witzenbichler B, Asahara T, Murohara T, Silver M, Spyridopoulos I, Magner M, Principe N, Kearney M, Hu JS, Isner JM (1998) Vascular endothelial growth factor-C (VEGF-C/VEGF-2) promotes angiogenesis in the setting of tissue ischemia. Am J Pathol 153(2):381–394. doi: 10.1016/S0002-9440(10)65582-4 PubMedCrossRefGoogle Scholar
  47. 47.
    Saaristo A, Veikkola T, Enholm B, Hytonen M, Arola J, Pajusola K, Turunen P, Jeltsch M, Karkkainen MJ, Kerjaschki D, Bueler H, Yla-Herttuala S, Alitalo K (2002) Adenoviral VEGF-C overexpression induces blood vessel enlargement, tortuosity, and leakiness but no sprouting angiogenesis in the skin or mucous membranes. FASEB J 16(9):1041–1049. doi: 10.1096/fj.01-1042com PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Steven T. Proulx
    • 1
  • Paola Luciani
    • 2
  • Annamari Alitalo
    • 1
  • Viviane Mumprecht
    • 1
  • Ailsa J. Christiansen
    • 1
  • Reto Huggenberger
    • 1
  • Jean-Christophe Leroux
    • 2
  • Michael Detmar
    • 1
  1. 1.Institute of Pharmaceutical Sciences, Swiss Federal Institute of TechnologyETH ZurichZurichSwitzerland
  2. 2.Institute of Pharmaceutical Sciences, Swiss Federal Institute of TechnologyETH ZurichZurichSwitzerland

Personalised recommendations