Angiogenesis

, Volume 16, Issue 1, pp 171–179

19F molecular MR imaging for detection of brain tumor angiogenesis: in vivo validation using targeted PFOB nanoparticles

  • Céline Giraudeau
  • Françoise Geffroy
  • Sébastien Mériaux
  • Fawzi Boumezbeur
  • Philippe Robert
  • Marc Port
  • Caroline Robic
  • Denis Le Bihan
  • Franck Lethimonnier
  • Julien Valette
Original Paper

Abstract

Molecular imaging with magnetic resonance imaging (MRI) targeted contrast agents has emerged as a promising diagnostic approach in cancer research to detect associated biomarkers. In this work, the potential of 19F MRI was investigated to detect angiogenesis with ανβ3-targeted perfluorooctylbromide nanoparticles (PFOB NP) in a U87 glioblastoma mouse model at 7 Tesla. Mice were injected intravenously with targeted or non-targeted NP and 19F images were immediately acquired for 90 min using a PFOB-dedicated MRI sequence. Mice infused with targeted NP exhibited higher concentrations in tumors than mice of the control group, despite the presence of nonspecific signal originating from the blood. Imaging results were corroborated by histology and fluorescence imaging, suggesting specific binding of targeted NP to ανβ3 integrin. Two other groups of mice were injected 24 h before imaging to allow blood clearance but no significant differences were found between both groups, probably due to a loss of specificity of PFOB NP. This is the first demonstration of the ability of 19F MRI to detect ανβ3-integrin endothelial expression in brain tumors in vivo.

Keywords

19F MRI ανβ3 Integrin PFOB nanoparticle Glioblastoma Mouse model 

References

  1. 1.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186PubMedCrossRefGoogle Scholar
  2. 2.
    Mulder WJM, Griffioen AW (2010) Imaging of angiogenesis. Angiogenesis 13:71–74PubMedCrossRefGoogle Scholar
  3. 3.
    Missbach-Guentner J, Hunia J, Alves F (2011) Tumor blood vessel visualization. Int J Dev Biol 55:535–546PubMedCrossRefGoogle Scholar
  4. 4.
    Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571PubMedCrossRefGoogle Scholar
  5. 5.
    Lim EH, Danthi N, Bednarski M, Li KC (2005) A review: integrin alphavbeta3-targeted molecular imaging and therapy in angiogenesis. Nanomedicine 1:110–114PubMedCrossRefGoogle Scholar
  6. 6.
    Sipkins DA, Cheresh DA, Kazemi M, Nevin LM, Bednarski MD, Li KCP (1998) Detection of tumor angiogenesis in vivo by alphavbeta3-targeted magnetic resonance imaging. Nat Med 4:623–626PubMedCrossRefGoogle Scholar
  7. 7.
    Gore JC, Manning HC, Quarles CC, Waddell KW, Yankeelov TE (2011) Magnetic resonance in the era of molecular imaging of cancer. Magn Reson Imaging 29:587–600PubMedCrossRefGoogle Scholar
  8. 8.
    Bogdanov A Jr, Mazzanti ML (2011) Molecular magnetic resonance contrast agents for the detection of cancer: past and present. Semin Oncol 38:42–54PubMedCrossRefGoogle Scholar
  9. 9.
    Oghabian MA, Farahbakhsh NM (2010) Potential use of nanoparticle based contrast agents in MRI: a molecular imaging perspective. J Biomed Nanotechnol 6:203–213PubMedCrossRefGoogle Scholar
  10. 10.
    Lanza GM, Winter PM, Caruthers SD, Hughes MS, Hu G, Schmieder AH, Wickline SA (2010) Theragnostics for tumor and plaque angiogenesis with perfluoro carbon nanoemulsions. Angiogenesis 13:189–202PubMedCrossRefGoogle Scholar
  11. 11.
    Mattrey RF (1994) The potential role of perfluorochemicals (PFCs) in diagnostic imaging. Artif Cells Blood Substit Immobil Biotechnol 22:295–313PubMedCrossRefGoogle Scholar
  12. 12.
    Anderson SA, Rader RK, Westlin WF, Null C, Jackson D, Lanza GM, Wickline SA, Kotyk JJ (2000) Magnetic resonance contrast enhancement of neovasculature with alpha(v)beta(3)-targeted nanoparticles. Magn Reson Med 44:433–439PubMedCrossRefGoogle Scholar
  13. 13.
    Winter PM, Caruthers SD, Kassner A, Harris TD, Chinen LK, Allen JS, Lacy EK, Zhang H, Robertson JD, Wickline SA, Lanza GM (2003) Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel ανβ3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res 63:5838–5843PubMedGoogle Scholar
  14. 14.
    Schmieder AH, Winter PM, Caruthers SD, Harris TD, Williams TA, Allen JS, Lacy EK, Zhang H, Scott MJ, Hu G, Robertson JD, Wickline SA, Lanza GM (2005) Molecular MR imaging of melanoma angiogenesis with ανβ3-targeted paramagnetic nanoparticles. Magn Reson Med 53:621–627PubMedCrossRefGoogle Scholar
  15. 15.
    Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, Allen JS, Lacy EK, Robertson JD, Lanza GM, Wickline SA (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 108:2270–2274PubMedCrossRefGoogle Scholar
  16. 16.
    Cyrus T, Abendschein DR, Caruthers SD, Harris TD, Glattauer V, Werkmeister JA, Ramshaw JA, Wickline SA, Lanza GM (2006) MR three-dimensional molecular imaging of intramural biomarkers with targeted nanoparticles. J Cardiovasc Magn Reson 8:535–541PubMedCrossRefGoogle Scholar
  17. 17.
    Waters EA, Chen J, Allen JS, Zhang H, Lanza GM, Wickline SA (2008) Detection and quantification of angiogenesis in experimental valve disease with integrin-targeted nanoparticles and 19-fluorine MRI/MRS. J Cardiovasc Magn Reson 10:43PubMedCrossRefGoogle Scholar
  18. 18.
    Waters EA, Chen J, Yang X, Zhang H, Neumann R, Santeford A, Arbeit J, Lanza GM, Wickline SA (2008) Detection of targeted perfluorocarbon nanoparticle binding using 19F diffusion weighted MR spectroscopy. Magn Reson Med 60:1232–1236PubMedCrossRefGoogle Scholar
  19. 19.
    Giraudeau C, Flament J, Marty B, Boumezbeur F, Mériaux S, Robic C, Port M, Tsapis N, Fattal E, Giacomini E, Lethimonnier F, Le Bihan D, Valette J (2010) A new paradigm for high-sensitivity 19F magnetic resonance imaging of perfluorooctylbromide. Magn Reson Med 63:1119–1124PubMedCrossRefGoogle Scholar
  20. 20.
    Giraudeau C, Djemaï B, Ghaly MA, Boumezbeur F, Mériaux S, Robert P, Port M, Robic C, Bihan DL, Lethimonnier F, Valette J (2012) High sensitivity (19) F MRI of a perfluorooctyl bromide emulsion: application to a dynamic biodistribution study and oxygen tension mapping in the mouse liver and spleen. NMR Biomed 25:654–660PubMedCrossRefGoogle Scholar
  21. 21.
    Owens DE 3rd, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102PubMedCrossRefGoogle Scholar
  22. 22.
    Ruoslahti E (1988) Fibronectin and its receptors. Annu Rev Biochem 57:375–413PubMedCrossRefGoogle Scholar
  23. 23.
    Shukla HP, Mason RP, Woessner DE, Antich PP (1995) A comparison of three commercial perfluorocarbon emulsions as high-field 19F NMR probes of oxygen tension and temperature. J Magn Reson 106:131–141CrossRefGoogle Scholar
  24. 24.
    Duong TQ, Kim SG (2000) In vivo MR measurements of regional arterial and venous blood volume fractions in intact rat brain. Magn Reson Med 43:393–402PubMedCrossRefGoogle Scholar
  25. 25.
    Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95:4607–4612PubMedCrossRefGoogle Scholar
  26. 26.
    Baish JW, Jain RK (2000) Fractals and cancer. Cancer Res 60:3683–3688PubMedGoogle Scholar
  27. 27.
    Morawski AM, Winter PM, Yu X, Fuhrhop RW, Scott MJ, Hockett F, Robertson JD, Gaffney PJ, Lanza GM, Wickline SA (2004) Quantitative “magnetic resonance immunohistochemistry” with ligand-targeted (19)F nanoparticles. Magn Reson Med 52:1255–1262PubMedCrossRefGoogle Scholar
  28. 28.
    Caldorera-Moore ME, Liechty WB, Peppas NA (2011) Responsive theranostic systems: integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. Acc Chem Res 44:1061–1070PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Céline Giraudeau
    • 1
  • Françoise Geffroy
    • 1
  • Sébastien Mériaux
    • 1
  • Fawzi Boumezbeur
    • 1
  • Philippe Robert
    • 2
  • Marc Port
    • 2
  • Caroline Robic
    • 2
  • Denis Le Bihan
    • 1
  • Franck Lethimonnier
    • 1
  • Julien Valette
    • 1
    • 3
  1. 1.Commissariat à l’Energie Atomique (CEA), Institut d’Imagerie Biomédicale (I²BM)Gif-sur-YvetteFrance
  2. 2.Guerbet, Research DivisionRoissy Charles de GaulleFrance
  3. 3.Commissariat à l’Energie Atomique (CEA), Institut d’Imagerie Biomédicale (I²BM), Molecular Imaging Research Center (MIRCen)Fontenay-aux-RosesFrance

Personalised recommendations