, Volume 16, Issue 1, pp 159–170 | Cite as

Synergy between a collagen IV mimetic peptide and a somatotropin-domain derived peptide as angiogenesis and lymphangiogenesis inhibitors

  • Jacob E. Koskimaki
  • Esak Lee
  • William Chen
  • Corban G. Rivera
  • Elena V. Rosca
  • Niranjan B. Pandey
  • Aleksander S. Popel
Original Paper


Angiogenesis is central to many physiological and pathological processes. Here we show two potent bioinformatically-identified peptides, one derived from collagen IV and translationally optimized, and one from a somatotropin domain-containing protein, synergize in angiogenesis and lymphangiogenesis assays including cell adhesion, migration and in vivo Matrigel plugs. Peptide-peptide combination therapies have recently been applied to diseases such as human immunodeficiency virus (HIV), but remain uncommon thus far in cancer, age-related macular degeneration and other angiogenesis-dependent diseases. Previous work from our group has shown that the collagen IV-derived peptide primarily binds β1 integrins, while the receptor for the somatotropin-derived peptide remains unknown. We investigate these peptides’ mechanisms of action and find both peptides affect the vascular endothelial growth factor (VEGF) pathway as well as focal adhesion kinase (FAK) by changes in phosphorylation level and total protein content. Blocking of FAK both through binding of β1 integrins and through inhibition of VEGFR2 accounts for the synergy we observe. Since resistance through activation of multiple signaling pathways is a central problem of anti-angiogenic therapies in diseases such as cancer, we suggest that peptide combinations such as these are an approach that should be considered as a means to sustain anti-angiogenic and anti-lymphangiogenic therapy and improve efficacy of treatment.


Angiogenesis Synergy Combination therapy Peptide Inhibitor 



This work was supported by NIH CA R01 138264, R21 CA131931, R21 CA 152473, The Safeway Foundation for Breast Cancer, The Thome Memorial Foundation and TEDCO Maryland Technology Development Corporation.

Ethical Standards

All experiments described herein complied with US legal and ethical standards.

Conflict of interest

The authors declare no conflict of interest. ASP serves as the CSO of AsclepiX Therapeutics, LLC; the terms of this arrangement are being managed by the Johns Hopkins University in accordance with its conflict of interest policies.

Supplementary material

10456_2012_9308_MOESM1_ESM.doc (28 kb)
Supplementary material 1 (DOC 28 kb)
10456_2012_9308_MOESM2_ESM.tif (27.9 mb)
Supplementary material 2 (TIFF 28594 kb)


  1. 1.
    Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887. doi: 10.1016/j.cell.2011.08.039 PubMedCrossRefGoogle Scholar
  2. 2.
    Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10(6):417–427. doi: 10.1038/nrd3455 PubMedCrossRefGoogle Scholar
  3. 3.
    Cao Y, Arbiser J, D’Amato RJ, D’Amore PA, Ingber DE, Kerbel R, Klagsbrun M, Lim S, Moses MA, Zetter B, Dvorak H, Langer R (2011) Forty-year journey of angiogenesis translational research. Sci Transl Med 3(114):114rv113. doi: 10.1126/scitranslmed.3003149 CrossRefGoogle Scholar
  4. 4.
    Ebos JM, Kerbel RS (2011) Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol 8(4):210–221. doi: 10.1038/nrclinonc.2011.21 PubMedCrossRefGoogle Scholar
  5. 5.
    Kerbel RS (2009) Issues regarding improving the impact of antiangiogenic drugs for the treatment of breast cancer. Breast 18(Suppl 3):S41–S47. doi: 10.1016/S0960-9776(09)70271-1 PubMedCrossRefGoogle Scholar
  6. 6.
    Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. doi: 10.1038/nature10144 PubMedCrossRefGoogle Scholar
  7. 7.
    Loges S, Mazzone M, Hohensinner P, Carmeliet P (2009) Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited. Cancer Cell 15(3):167–170. doi: 10.1016/j.ccr.2009.02.007 PubMedCrossRefGoogle Scholar
  8. 8.
    Albrecht I, Christofori G (2011) Molecular mechanisms of lymphangiogenesis in development and cancer. Int J Dev Biol 55(4–5):483–494. doi: 10.1387/ijdb.103226ia PubMedCrossRefGoogle Scholar
  9. 9.
    Lund AW, Duraes FV, Hirosue S, Raghavan VR, Nembrini C, Thomas SN, Issa A, Hugues S, Swartz MA (2012) VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep 1(3):191–199. doi: 10.1016/j.celrep.2012.01.005 PubMedCrossRefGoogle Scholar
  10. 10.
    Karagiannis ED, Popel AS (2008) A systematic methodology for proteome-wide identification of peptides inhibiting the proliferation and migration of endothelial cells. Proc Natl Acad Sci USA 105(37):13775–13780. doi: 10.1073/pnas.0803241105 PubMedCrossRefGoogle Scholar
  11. 11.
    Karagiannis ED, Popel AS (2007) Identification of novel short peptides derived from the alpha 4, alpha 5, and alpha 6 fibrils of type IV collagen with anti-angiogenic properties. Biochem Biophys Res Commun 354(2):434–439. doi: 10.1016/j.bbrc.2006.12.231 PubMedCrossRefGoogle Scholar
  12. 12.
    Koskimaki JE, Karagiannis ED, Rosca EV, Vesuna F, Winnard PT Jr, Raman V, Bhujwalla ZM, Popel AS (2009) Peptides derived from type IV collagen, CXC chemokines, and thrombospondin-1 domain-containing proteins inhibit neovascularization and suppress tumor growth in MDA-MB-231 breast cancer xenografts. Neoplasia 11(12):1285–1291PubMedGoogle Scholar
  13. 13.
    Koskimaki JE, Karagiannis ED, Tang BC, Hammers H, Watkins DN, Pili R, Popel AS (2010) Pentastatin-1, a collagen IV derived 20-mer peptide, suppresses tumor growth in a small cell lung cancer xenograft model. BMC Cancer 10:29. doi: 10.1186/1471-2407-10-29 PubMedCrossRefGoogle Scholar
  14. 14.
    Rosca EV, Lal B, Koskimaki JE, Popel AS, Laterra J (2012) Collagen IV and CXC chemokine-derived antiangiogenic peptides suppress glioma xenograft growth. Anticancer Drugs. doi: 10.1097/CAD.0b013e3283531041 PubMedGoogle Scholar
  15. 15.
    Rosca EV, Koskimaki JE, Pandey NB, Wolff AC, Popel AS (2011) Development of a biomimetic peptide derived from collagen IV with anti-angiogenic activity in breast cancer. Cancer Biol Ther 12(9):808–817PubMedCrossRefGoogle Scholar
  16. 16.
    Rivera CG, Rosca EV, Pandey NB, Koskimaki JE, Bader JS, Popel AS (2011) Novel peptide-specific quantitative structure-activity relationship (QSAR) analysis applied to collagen IV peptides with antiangiogenic activity. J Med Chem 54(19):6492–6500. doi: 10.1021/jm200114f PubMedCrossRefGoogle Scholar
  17. 17.
    Rosca EV, Koskimaki JE, Pandey NB, Tamiz AP, Popel AS (2012) Structure-activity relationship study of collagen derived anti-angiogenic biomimetic peptides. Chem Biol Drug Des. doi: 10.1111/j.1747-0285.2012.01376.x PubMedGoogle Scholar
  18. 18.
    Lee E, Rosca EV, Pandey NB, Popel AS (2011) Small peptides derived from somatotropin domain-containing proteins inhibit blood and lymphatic endothelial cell proliferation, migration, adhesion and tube formation. Int J Biochem Cell Biol 43(12):1812–1821. doi: 10.1016/j.biocel.2011.08.020 PubMedCrossRefGoogle Scholar
  19. 19.
    Huber PE, Bischof M, Jenne J, Heiland S, Peschke P, Saffrich R, Grone HJ, Debus J, Lipson KE, Abdollahi A (2005) Trimodal cancer treatment: beneficial effects of combined antiangiogenesis, radiation, and chemotherapy. Cancer Res 65(9):3643–3655. doi: 10.1158/0008-5472.CAN-04-1668 PubMedCrossRefGoogle Scholar
  20. 20.
    Abdollahi A, Folkman J (2010) Evading tumor evasion: current concepts and perspectives of anti-angiogenic cancer therapy. Drug Resist Updat 13(1–2):16–28. doi: 10.1016/j.drup.2009.12.001 PubMedCrossRefGoogle Scholar
  21. 21.
    Rosca EV, Koskimaki JE, Rivera CG, Pandey NB, Tamiz AP, Popel AS (2011) Anti-angiogenic peptides for cancer therapeutics. Curr Pharm Biotechnol 12(8):1101–1116PubMedCrossRefGoogle Scholar
  22. 22.
    Saladin PM, Zhang BD, Reichert JM (2009) Current trends in the clinical development of peptide therapeutics. IDrugs 12(12):779–784PubMedGoogle Scholar
  23. 23.
    Foy KC, Liu Z, Phillips G, Miller M, Kaumaya PT (2011) Combination treatment with HER-2 and VEGF peptide mimics induces potent anti-tumor and anti-angiogenic responses in vitro and in vivo. J Biol Chem 286(15):13626–13637. doi: 10.1074/jbc.M110.216820 PubMedCrossRefGoogle Scholar
  24. 24.
    Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55PubMedCrossRefGoogle Scholar
  25. 25.
    Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70(2):440–446. doi: 10.1158/0008-5472.CAN-09-1947 PubMedCrossRefGoogle Scholar
  26. 26.
    Rosca EV, Koskimaki JE, Pandey NB, Wolff AC, Popel AS (2011) Development of a biomimetic peptide derived from collagen IV with anti-angiogenic activity in breast cancer. Cancer Biol Ther 12(9):808–817. doi: 10.4161/cbt.12.9.17677 PubMedCrossRefGoogle Scholar
  27. 27.
    Zhang Z, Vuori K, Reed JC, Ruoslahti E (1995) The alpha 5 beta 1 integrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression. Proc Natl Acad Sci USA 92(13):6161–6165PubMedCrossRefGoogle Scholar
  28. 28.
    Le Boeuf F, Houle F, Huot J (2004) Regulation of vascular endothelial growth factor receptor 2-mediated phosphorylation of focal adhesion kinase by heat shock protein 90 and Src kinase activities. J Biol Chem 279(37):39175–39185. doi: 10.1074/jbc.M405493200 PubMedCrossRefGoogle Scholar
  29. 29.
    Zhao X, Guan JL (2011) Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev 63(8):610–615. doi: 10.1016/j.addr.2010.11.001 PubMedCrossRefGoogle Scholar
  30. 30.
    Infusino GA, Jacobson JR (2011) Endothelial FAK as a therapeutic target in disease. Microvasc Res. doi: 10.1016/j.mvr.2011.09.011 PubMedGoogle Scholar
  31. 31.
    Xiong Y, Huo Y, Chen C, Zeng H, Lu X, Wei C, Ruan C, Zhang X, Hu Z, Shibuya M, Luo J (2009) Vascular endothelial growth factor (VEGF) receptor-2 tyrosine 1175 signaling controls VEGF-induced von Willebrand factor release from endothelial cells via phospholipase C-gamma 1- and protein kinase A-dependent pathways. J Biol Chem 284(35):23217–23224. doi: 10.1074/jbc.M109.019679 PubMedCrossRefGoogle Scholar
  32. 32.
    Kiyoi H, Ohno R, Ueda R, Saito H, Naoe T (2002) Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene 21(16):2555–2563. doi: 10.1038/sj.onc.1205332 PubMedCrossRefGoogle Scholar
  33. 33.
    Weisberg E, Barrett R, Liu Q, Stone R, Gray N, Griffin JD (2009) FLT3 inhibition and mechanisms of drug resistance in mutant FLT3-positive AML. Drug Resist Updat 12(3):81–89. doi: 10.1016/j.drup.2009.04.001 PubMedCrossRefGoogle Scholar
  34. 34.
    Silva R, D’Amico G, Hodivala-Dilke KM, Reynolds LE (2008) Integrins: the keys to unlocking angiogenesis. Arterioscler Thromb Vasc Biol 28(10):1703–1713. doi: 10.1161/ATVBAHA.108.172015 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Jacob E. Koskimaki
    • 1
  • Esak Lee
    • 2
  • William Chen
    • 1
  • Corban G. Rivera
    • 1
  • Elena V. Rosca
    • 1
  • Niranjan B. Pandey
    • 1
  • Aleksander S. Popel
    • 1
    • 2
    • 3
  1. 1.Department of Biomedical Engineering, School of MedicineJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreUSA
  3. 3.Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, School of MedicineJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations