Angiogenesis

, Volume 15, Issue 1, pp 99–114 | Cite as

MG624, an α7-nAChR antagonist, inhibits angiogenesis via the Egr-1/FGF2 pathway

  • Kathleen C. Brown
  • Jamie K. Lau
  • Aaron M. Dom
  • Theodore R. Witte
  • Haitao Luo
  • Clayton M. Crabtree
  • Yashoni H. Shah
  • Brandon S. Shiflett
  • Aileen J. Marcelo
  • Nancy A. Proper
  • W. Elaine Hardman
  • Richard D. Egleton
  • Yi Charlie Chen
  • Elsa I. Mangiarua
  • Piyali Dasgupta
Original Paper

Abstract

Small cell lung cancer (SCLC) demonstrates a strong etiological association with smoking. Although cigarette smoke is a mixture of about 4,000 compounds, nicotine is the addictive component of cigarette smoke. Several convergent studies have shown that nicotine promotes angiogenesis in lung cancers via the α7-nicotinic acetylcholine receptor (α7-nAChR) on endothelial cells. Therefore, we conjectured that α7-nAChR antagonists may attenuate nicotine-induced angiogenesis and be useful for the treatment of human SCLC. For the first time, our study explores the anti-angiogenic activity of MG624, a small-molecule α7-nAChR antagonist, in several experimental models of angiogenesis. We observed that MG624 potently suppressed the proliferation of primary human microvascular endothelial cells of the lung (HMEC-Ls). Furthermore, MG624 displayed robust anti-angiogenic activity in the Matrigel, rat aortic ring and rat retinal explant assays. The anti-angiogenic activity of MG624 was assessed by two in vivo models, namely the chicken chorioallantoic membrane model and the nude mice model. In both of these experimental models, MG624 inhibited angiogenesis of human SCLC tumors. Most importantly, the administration of MG624 was not associated with any toxic side effects, lethargy or discomfort in the mice. The anti-angiogenic activity of MG624 was mediated via the suppression of nicotine-induced FGF2 levels in HMEC-Ls. MG624 decreased nicotine-induced early growth response gene 1 (Egr-1) levels in HMEC-Ls, and reduced the levels of Egr-1 on the FGF2 promoter. Consequently, this process decreased FGF2 levels and angiogenesis. Our findings suggest that the anti-angiogenic effects of MG624 could be useful in anti-angiogenic therapy of human SCLCs.

Keywords

MG624 α7-nAChR Nicotine Angiogenesis SCLC FGF2 

Notes

Acknowledgments

We thank Dr. Srikumar Chellappan and his laboratory for continuous support. We are grateful to Carla Cook, Dr. Travis Salisbury and Dr. Nalini Santanam for their help in the real-time PCR experiments. We also acknowledge Dr. Cattini and Dr. Nilson for providing us the constructs used in this study. This work was supported by the grants Young Clinical Scientist Award (#82115) from the Flight Attendant Medical Association, Miami, FL, Research Starter Grant from the PhRMA Foundation, Washington D.C., ASPET-Astellas Award, NIH-ROI-NIDDK65003 (to RDE). AMD and KCB are recipients of graduate fellowships from the WVSGC.

Conflict of interest

None of the authors have any conflict of interest.

Ethics statement

All experiments were performed in the United States of America and they comply with the laws of the USA.

Supplementary material

10456_2011_9246_MOESM1_ESM.tif (5.1 mb)
Supplementary material 1 (TIFF 5197 kb)
10456_2011_9246_MOESM2_ESM.tif (1 mb)
Supplementary material 2 (TIFF 1048 kb)
10456_2011_9246_MOESM3_ESM.tif (2.3 mb)
Supplementary material 3 (TIFF 2347 kb)
10456_2011_9246_MOESM4_ESM.doc (30 kb)
Supplementary material 4 (DOC 29 kb)

References

  1. 1.
    Bhadada SV, Goyal BR, Patel MM (2011) Angiogenic targets for potential disorders. Fundam Clin Pharmacol 25(1):29–47. doi:10.1111/j.1472-8206.2010.00814.x PubMedCrossRefGoogle Scholar
  2. 2.
    Blann AD, Ramcharan KS, Stonelake PS, Luesley D, Lip GY (2011) The angiome: a new concept in cancer biology. J Clin Pathol. doi:10.1136/jcp.2011.088948
  3. 3.
    Folkman J (2003) Fundamental concepts of the angiogenic process. Curr Mol Med 3(7):643–651PubMedCrossRefGoogle Scholar
  4. 4.
    Folkman J (2003) Angiogenesis inhibitors: a new class of drugs. Cancer Biol Ther 2(4 Suppl 1):S127–S133PubMedGoogle Scholar
  5. 5.
    Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6(4):273–286PubMedCrossRefGoogle Scholar
  6. 6.
    Cai J, Han S, Qing R, Liao D, Law B, Boulton ME (2011) In pursuit of new anti-angiogenic therapies for cancer treatment. Front Biosci 16:803–814PubMedCrossRefGoogle Scholar
  7. 7.
    Kitamura H, Yazawa T, Sato H, Okudela K, Shimoyamada H (2009) Small cell lung cancer: significance of RB alterations and TTF-1 expression in its carcinogenesis, phenotype, and biology. Endocr Pathol 20(2):101–107. doi:10.1007/s12022-009-9072-4 PubMedCrossRefGoogle Scholar
  8. 8.
    Martinez-Garcia E, Irigoyen M, Gonzalez-Moreno O, Corrales L, Teijeira A, Salvo E, Rouzaut A (2010) Repetitive nicotine exposure leads to a more malignant and metastasis-prone phenotype of SCLC: a molecular insight into the importance of quitting smoking during treatment. Toxicol Sci 116(2):467–476. doi:10.1093/toxsci/kfq138 PubMedCrossRefGoogle Scholar
  9. 9.
    Heeschen C, Jang JJ, Weis M, Pathak A, Kaji S, Hu RS, Tsao PS, Johnson FL, Cooke JP (2001) Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nat Med 7(7):833–839PubMedCrossRefGoogle Scholar
  10. 10.
    Heeschen C, Weis M, Aicher A, Dimmler S, Cooke JP (2002) A novel angiogenic pathway mediated by non-neuronal nicotinic acetylcholine receptors. J Clin Invest 110:527–536PubMedGoogle Scholar
  11. 11.
    Arias HR, Richards VE, Ng D, Ghafoori ME, Le V, Mousa SA (2009) Role of non-neuronal nicotinic acetylcholine receptors in angiogenesis. Int J Biochem Cell Biol 41(7):1441–1451. doi:10.1016/j.biocel.2009.01.013 PubMedCrossRefGoogle Scholar
  12. 12.
    Costa F, Soares R (2009) Nicotine: a pro-angiogenic factor. Life Sci 84(23–24):785–790. doi:10.1016/j.lfs.2009.03.002 PubMedCrossRefGoogle Scholar
  13. 13.
    Singh S, Pillai S, Chellappan S (2011) Nicotinic acetylcholine receptor signaling in tumor growth and metastasis. J Oncol 2011:456743. doi:10.1155/2011/456743 PubMedGoogle Scholar
  14. 14.
    Dasgupta P, Chellappan SP (2006) Nicotine-mediated cell proliferation and angiogenesis: new twists to an old story. Cell Cycle 5(20):2324–2328PubMedCrossRefGoogle Scholar
  15. 15.
    Egleton RD, Brown KC, Dasgupta P (2009) Angiogenic activity of nicotinic acetylcholine receptors: implications in tobacco-related vascular diseases. Pharmacol Ther 121(2):205–223PubMedCrossRefGoogle Scholar
  16. 16.
    Cooke JP (2007) Angiogenesis and the role of the endothelial nicotinic acetylcholine receptor. Life Sci 80(24–25):2347–2351PubMedCrossRefGoogle Scholar
  17. 17.
    Cooke JP, Bitterman H (2004) Nicotine and angiogenesis: a new paradigm for tobacco-related diseases. Ann Med 36(1):33–40PubMedCrossRefGoogle Scholar
  18. 18.
    Kiuchi K, Matsuoka M, Wu JC, Lima ESR, Kengatharan M, Verghese M, Ueno S, Yokoi K, Khu NH, Cooke JP, Campochiaro PA (2008) Mecamylamine suppresses Basal and nicotine-stimulated choroidal neovascularization. Invest Ophthalmol Vis Sci 49(4):1705–1711PubMedCrossRefGoogle Scholar
  19. 19.
    Suner IJ, Espinosa-Heidmann DG, Marin-Castano ME, Hernandez EP, Pereira-Simon S, Cousins SW (2004) Nicotine increases size and severity of experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 45(1):311–317PubMedCrossRefGoogle Scholar
  20. 20.
    Paleari L, Catassi A, Ciarlo M, Cavalieri Z, Bruzzo C, Servent D, Cesario A, Chessa L, Cilli M, Piccardi F, Granone P, Russo P (2008) Role of alpha7-nicotinic acetylcholine receptor in human non-small cell lung cancer proliferation. Cell Prolif 41(6):936–959. doi:10.1111/j.1365-2184.2008.00566.x PubMedCrossRefGoogle Scholar
  21. 21.
    Paleari L, Cesario A, Fini M, Russo P (2009) Alpha7-Nicotinic receptor antagonists at the beginning of a clinical era for NSCLC and Mesothelioma? Drug Discov Today 14(17–18):822–836. doi:10.1016/j.drudis.2009.06.016 PubMedCrossRefGoogle Scholar
  22. 22.
    Paleari L, Grozio A, Cesario A, Russo P (2008) The cholinergic system and cancer. Semin Cancer Biol 18(3):211–217. doi:10.1016/j.semcancer.2007.12.009 PubMedCrossRefGoogle Scholar
  23. 23.
    Grozio A, Paleari L, Catassi A, Servent D, Cilli M, Piccardi F, Paganuzzi M, Cesario A, Granone P, Mourier G, Russo P (2008) Natural agents targeting the alpha7-nicotinic-receptor in NSCLC: a promising prospective in anti-cancer drug development. Int J Cancer 122(8):1911–1915. doi:10.1002/ijc.23298 PubMedCrossRefGoogle Scholar
  24. 24.
    Paleari L, Sessa F, Catassi A, Servent D, Mourier G, Doria-Miglietta G, Ognio E, Cilli M, Dominioni L, Paolucci M, Calcaterra A, Cesario A, Margaritora S, Granone P, Russo P (2009) Inhibition of non-neuronal alpha7-nicotinic receptor reduces tumorigenicity in A549 NSCLC xenografts. Int J Cancer 125(1):199–211. doi:10.1002/ijc.24299 PubMedCrossRefGoogle Scholar
  25. 25.
    Alama A, Bruzzo C, Cavalieri Z, Forlani A, Utkin Y, Casciano I, Romani M (2011) Inhibition of the nicotinic acetylcholine receptors by cobra venom alpha-neurotoxins: is there a perspective in lung cancer treatment? PLoS One 6(6):e20695. doi:10.1371/journal.pone.0020695
  26. 26.
    Gotti C, Balestra B, Moretti M, Rovati GE, Maggi L, Rossoni G, Berti F, Villa L, Pallavicini M, Clementi F (1998) 4-Oxystilbene compounds are selective ligands for neuronal nicotinic alphaBungarotoxin receptors. Br J Pharmacol 124(6):1197–1206. doi:10.1038/sj.bjp.0701957 PubMedCrossRefGoogle Scholar
  27. 27.
    Gotti C, Carbonnelle E, Moretti M, Zwart R, Clementi F (2000) Drugs selective for nicotinic receptor subtypes: a real possibility or a dream? Behav Brain Res 113(1–2):183–192PubMedCrossRefGoogle Scholar
  28. 28.
    Maggi L, Palma E, Eusebi F, Moretti M, Balestra B, Clementi F, Gotti C (1999) Selective effects of a 4-oxystilbene derivative on wild and mutant neuronal chick alpha7 nicotinic receptor. Br J Pharmacol 126(1):285–295. doi:10.1038/sj.bjp.0702299 PubMedCrossRefGoogle Scholar
  29. 29.
    Tanibuchi Y, Wu J, Toyohara J, Fujita Y, Iyo M, Hashimoto K (2010) Characterization of [(3)H]CHIBA-1001 binding to alpha7 nicotinic acetylcholine receptors in the brain from rat, monkey, and human. Brain Res 1348:200–208. doi:10.1016/j.brainres.2010.06.008 PubMedCrossRefGoogle Scholar
  30. 30.
    Wu J, Toyohara J, Tanibuchi Y, Fujita Y, Zhang J, Chen H, Matsuo M, Wang RF, Hashimoto K (2010) Pharmacological characterization of [(125)I]CHIBA-1006 binding, a new radioligand for alpha7 nicotinic acetylcholine receptors, to rat brain membranes. Brain Res 1360:130–137. doi:10.1016/j.brainres.2010.08.095 PubMedCrossRefGoogle Scholar
  31. 31.
    Fahmy RG, Dass CR, Sun LQ, Chesterman CN, Khachigian LM (2003) Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth. Nat Med 9(8):1026–1032. doi:10.1038/nm905 PubMedCrossRefGoogle Scholar
  32. 32.
    Wang D, Mayo MW, Baldwin AS Jr (1997) Basic fibroblast growth factor transcriptional autoregulation requires EGR-1. Oncogene 14(19):2291–2299. doi:10.1038/sj.onc.1201069 PubMedCrossRefGoogle Scholar
  33. 33.
    Jimenez SK, Sheikh F, Jin Y, Detillieux KA, Dhaliwal J, Kardami E, Cattini PA (2004) Transcriptional regulation of FGF-2 gene expression in cardiac myocytes. Cardiovasc Res 62(3):548–557. doi:10.1016/j.cardiores.2004.01.032 PubMedCrossRefGoogle Scholar
  34. 34.
    Brown KC, Witte TR, Hardman WE, Luo H, Chen YC, Carpenter AB, Lau JK, Dasgupta P (2010) Capsaicin displays anti-proliferative activity against human small cell lung cancer in cell culture and nude mice models via the E2F pathway. PLoS One 5(4):e10243. doi:10.1371/journal.pone.0010243
  35. 35.
    Dasgupta P, Rastogi S, Pillai S, Ordonez-Ercan D, Morris M, Haura E, Chellappan S (2006) Nicotine induces cell proliferation by beta-arrestin-mediated activation of Src and Rb-Raf-1 pathways. J Clin Invest 116(8):2208–2217PubMedCrossRefGoogle Scholar
  36. 36.
    Dasgupta P, Kinkade R, Joshi B, Decook C, Haura E, Chellappan S (2006) Nicotine inhibits apoptosis induced by chemotherapeutic drugs by up-regulating XIAP and survivin. Proc Natl Acad Sci USA 103(16):6332–6337PubMedCrossRefGoogle Scholar
  37. 37.
    Dasgupta P, Sun J, Wang S, Fusaro G, Betts V, Padmanabhan J, Sebti SM, Chellappan SP (2004) Disruption of the Rb–Raf-1 interaction inhibits tumor growth and angiogenesis. Mol Cell Biol 24(21):9527–9541PubMedCrossRefGoogle Scholar
  38. 38.
    Kinkade R, Dasgupta P, Carie A, Pernazza D, Carless M, Pillai S, Lawrence N, Sebti SM, Chellappan S (2008) A small molecule disruptor of Rb/Raf-1 interaction inhibits cell proliferation, angiogenesis, and growth of human tumor xenografts in nude mice. Cancer Res 68(10):3810–3818. doi:10.1158/0008-5472.CAN-07-6672 PubMedCrossRefGoogle Scholar
  39. 39.
    Shafiee A, Penn JS, Krutzsch HC, Inman JK, Roberts DD, Blake DA (2000) Inhibition of retinal angiogenesis by peptides derived from thrombospondin-1. Invest Ophthalmol Vis Sci 41(8):2378–2388PubMedGoogle Scholar
  40. 40.
    Banumathi E, Haribalaganesh R, Sheik Pran Babu S, Sirish Kumar N, Sangiliyandi G (2009) High-yielding enzymatic method for isolation and culture of microvascular endothelial cells from bovine retinal blood vessels. Microvasc Res 77(3):377–381. doi:10.1016/j.mvr.2008.12.005
  41. 41.
    Ponce ML, Kleinmann HK (2003) The chick chorioallantoic membrane as an in vivo angiogenesis model. Curr Protoc Cell Biol. Chapter 19:Unit 19 15. doi:10.1002/0471143030.cb1905s18
  42. 42.
    Gu JW, Bailey AP, Sartin A, Makey I, Brady AL (2005) Ethanol stimulates tumor progression and expression of vascular endothelial growth factor in chick embryos. Cancer 103(2):422–431. doi:10.1002/cncr.20781 PubMedCrossRefGoogle Scholar
  43. 43.
    Song P, Sekhon HS, Lu A, Arredondo J, Sauer D, Gravett C, Mark GP, Grando SA, Spindel ER (2007) M3 muscarinic receptor antagonists inhibit small cell lung carcinoma growth and mitogen-activated protein kinase phosphorylation induced by acetylcholine secretion. Cancer Res 67(8):3936–3944PubMedCrossRefGoogle Scholar
  44. 44.
    Xia G, Kumar SR, Masood R, Koss M, Templeman C, Quinn D, Zhu S, Reddy R, Krasnoperov V, Gill PS (2005) Up-regulation of EphB4 in mesothelioma and its biological significance. Clin Cancer Res 11(12):4305–4315. doi:10.1158/1078-0432.CCR-04-2109 PubMedCrossRefGoogle Scholar
  45. 45.
    Moilanen E, Thomsen LL, Miles DW, Happerfield DW, Knowles RG, Moncada S (1998) Persistent induction of nitric oxide synthase in tumours from mice treated with the anti-tumour agent 5, 6-dimethylxanthenone-4-acetic acid. Br J Cancer 77(3):426–433PubMedCrossRefGoogle Scholar
  46. 46.
    Dasgupta P, Rizwani W, Pillai S, Davis R, Banerjee S, Hug K, Lloyd M, Coppola D, Haura E, Chellappan SP (2011) ARRB1-mediated regulation of E2F target genes in nicotine-induced growth of lung tumors. J Natl Cancer Inst 103(4):317–333. doi:10.1093/jnci/djq541 PubMedCrossRefGoogle Scholar
  47. 47.
    Chang PY, Lu SC, Lee CM, Chen YJ, Dugan TA, Huang WH, Chang SF, Liao WS, Chen CH, Lee YT (2008) Homocysteine inhibits arterial endothelial cell growth through transcriptional downregulation of fibroblast growth factor-2 involving G protein and DNA methylation. Circ Res 102(8):933–941. doi:10.1161/CIRCRESAHA.108.171082 PubMedCrossRefGoogle Scholar
  48. 48.
    Ralser M, Querfurth R, Warnatz HJ, Lehrach H, Yaspo ML, Krobitsch S (2006) An efficient and economic enhancer mix for PCR. Biochem Biophys Res Commun 347(3):747–751. doi:10.1016/j.bbrc.2006.06.151 PubMedCrossRefGoogle Scholar
  49. 49.
    Kundumani-Sridharan V, Niu J, Wang D, Van Quyen D, Zhang Q, Singh NK, Subramani J, Karri S, Rao GN (2010) 15(S)-hydroxyeicosatetraenoic acid-induced angiogenesis requires Src-mediated Egr-1-dependent rapid induction of FGF-2 expression. Blood 115(10):2105–2116. doi:10.1182/blood-2009-09-241802 PubMedCrossRefGoogle Scholar
  50. 50.
    Fisch TM, Prywes R, Simon MC, Roeder RG (1989) Multiple sequence elements in the c-fos promoter mediate induction by cAMP. Genes Dev 3(2):198–211PubMedCrossRefGoogle Scholar
  51. 51.
    Dom AM, Buckley AW, Brown KC, Egleton RD, Marcelo AJ, Proper NA, Weller DE, Shah YH, Lau JK, Dasgupta P (2010) The α7-nicotinic acetylcholine receptor and MMP-2/9 pathway mediate the pro-angiogenic effect of nicotine in human retinal endothelial cells. Invest Ophthalmol Vis Sci. doi:10.1167/iovs.10-5461
  52. 52.
    Romanelli MN, Gualtieri F (2003) Cholinergic nicotinic receptors: competitive ligands, allosteric modulators, and their potential applications. Med Res Rev 23(4):393–426PubMedCrossRefGoogle Scholar
  53. 53.
    Cucina A, Corvino V, Sapienza P, Borrelli V, Lucarelli M, Scarpa S, Strom R, Santoro-D’Angelo L, Cavallaro A (1999) Nicotine regulates basic fibroblastic growth factor and transforming growth factor beta1 production in endothelial cells. Biochem Biophys Res Commun 257(2):306–312PubMedCrossRefGoogle Scholar
  54. 54.
    Cucina A, Sapienza P, Corvino V, Borrelli V, Mariani V, Randone B, Santoro-D’Angelo L, Cavallaro A (2000) Nicotine-induced smooth muscle cell proliferation is mediated through bFGF and TGF-b1. Surgery 127(1):316–322PubMedCrossRefGoogle Scholar
  55. 55.
    Cucina A, Sapienza P, Corvino V, Borrelli V, Randone B, Santoro-D’Angelo L, Cavallaro A (2000) Nicotine induces platelet-derived growth factor release and cytoskeletal alteration in aortic smooth muscle cells. Surgery 127(1):72–78PubMedCrossRefGoogle Scholar
  56. 56.
    Pasumarthi KB, Jin Y, Cattini PA (1997) Cloning of the rat fibroblast growth factor-2 promoter region and its response to mitogenic stimuli in glioma C6 cells. J Neurochem 68(3):898–908PubMedCrossRefGoogle Scholar
  57. 57.
    Biesiada E, Razandi M, Levin ER (1996) Egr-1 activates basic fibroblast growth factor transcription. Mechanistic implications for astrocyte proliferation. J Biol Chem 271(31):18576–18581PubMedCrossRefGoogle Scholar
  58. 58.
    Jin Y, Sheikh F, Detillieux KA, Cattini PA (2000) Role for early growth response-1 protein in alpha(1)-adrenergic stimulation of fibroblast growth factor-2 promoter activity in cardiac myocytes. Mol Pharmacol 57(5):984–990PubMedGoogle Scholar
  59. 59.
    Ganti AK, West WW, Lackner RP, Kessinger A (2010) Current concepts in the diagnosis and management of small-cell lung cancer. Oncology (Williston Park) 24(11):1034–1039Google Scholar
  60. 60.
    Lucchi M, Mussi A, Fontanini G, Faviana P, Ribechini A, Angeletti CA (2002) Small cell lung carcinoma (SCLC): the angiogenic phenomenon. Eur J Cardiothorac Surg 21(6):1105–1110PubMedCrossRefGoogle Scholar
  61. 61.
    Zhu BQ, Heeschen C, Sievers RE, Karliner JS, Parmley WW, Glantz SA, Cooke JP (2003) Second hand smoke stimulates tumor angiogenesis and growth. Cancer Cell 4(3):191–196PubMedCrossRefGoogle Scholar
  62. 62.
    Conklin BS, Zhao W, Zhong DS, Chen C (2002) Nicotine and cotinine up-regulate vascular endothelial growth factor expression in endothelial cells. Am J Pathol 160(2):413–418PubMedCrossRefGoogle Scholar
  63. 63.
    Fukuda N (2010) Cigarette smoking induces vascular proliferative disease through the activation of Egr-1. Cardiovasc Res 88(2):207–208. doi:10.1093/cvr/cvq295 PubMedCrossRefGoogle Scholar
  64. 64.
    Choi JE, Kim JN, Jeong SH, Son SW (2010) Nicotine induces the expression of early growth response-1 in human skin dermal fibroblasts. Int J Dermatol 49(2):158–161. doi:10.1111/j.1365-4632.2009.04210.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Kathleen C. Brown
    • 1
  • Jamie K. Lau
    • 1
  • Aaron M. Dom
    • 1
  • Theodore R. Witte
    • 2
  • Haitao Luo
    • 3
  • Clayton M. Crabtree
    • 1
  • Yashoni H. Shah
    • 4
  • Brandon S. Shiflett
    • 1
  • Aileen J. Marcelo
    • 1
  • Nancy A. Proper
    • 1
  • W. Elaine Hardman
    • 2
  • Richard D. Egleton
    • 1
  • Yi Charlie Chen
    • 3
  • Elsa I. Mangiarua
    • 1
  • Piyali Dasgupta
    • 1
  1. 1.Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of MedicineMarshall UniversityHuntingtonUSA
  2. 2.Department of Biochemistry and Microbiology, Joan C. Edwards School of MedicineMarshall UniversityHuntingtonUSA
  3. 3.Department of BiologyAlderson-Broaddus CollegePhilippiUSA
  4. 4.Department of BiologyWest Virginia UniversityMorgantownUSA

Personalised recommendations