, Volume 15, Issue 1, pp 59–70 | Cite as

Foretinib demonstrates anti-tumor activity and improves overall survival in preclinical models of hepatocellular carcinoma

Original Paper


Purpose of study

Hepatocellular carcinoma (HCC) is the third leading cause of cancer death. Although sorafenib has been shown to improve survival of patients with advanced HCC, this improvement is modest and patients eventually have refractory disease. The purpose of this study is to assess the anti-tumor and anti-angiogenic activities of foretinib, a vascular endothelial growth factor receptor 2 (VEGFR-2) and c-Met inhibitor using mouse models of human HCC.

Experimental techniques

SK-HEP1 and 21-0208 HCC cells as well as patient-derived HCC models were employed to study the anti-tumor and antiangiogenic activities of foretinib. Changes of biomarkers relevant to hepatocyte growth factor (HGF) signaling pathways were determined by Western blotting. Microvessel density, apoptosis and cell proliferation were analyzed by immunohistochemistry.


Treatment of SK-HEP1 cells with foretinib resulted in growth inhibition, G2/M cell cycle arrest, reduced colony formation and blockade of HGF-induced cell migration. In both orthotopic and ectopic models of HCC, foretinib potently inhibited tumor growth in a dose-dependent manner. Inhibition of angiogenesis correlated with inactivation of VEGFR-2/c-Met signaling pathways. Foretinib also caused elevation of p27 and Bim but reduced cyclin B1 expression and p–c-Myc, which resulted in a reduction in cellular proliferation and the induction of tumor cell apoptosis. In an orthotopic model, foretinib potently inhibited primary tumor growth and significantly prolonged mouse survival.

Data interpretations

Foretinib demonstrated significant antitumor activities in patient-derived HCC xenograft models. This study provides a compelling rationale for clinical investigation in patients with advanced HCC.


Foretinib HCC Growth inhibition Angiogenesis 

Supplementary material

10456_2011_9243_MOESM1_ESM.ppt (623 kb)
Supplementary material 1 (PPT 623 kb)
10456_2011_9243_MOESM2_ESM.ppt (822 kb)
Supplementary material 2 (PPT 822 kb)
10456_2011_9243_MOESM3_ESM.ppt (284 kb)
Supplementary material 3 (PPT 284 kb)
10456_2011_9243_MOESM4_ESM.ppt (288 kb)
Supplementary material 4 (PPT 287 kb)


  1. 1.
    Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300PubMedCrossRefGoogle Scholar
  2. 2.
    Okuda K, Ohtsuki T, Obata H, Tomimatsu M, Okazaki N, Hasegawa H, Nakajima Y, Ohnishi K (1985) Natural history of hepatocellular carcinoma and prognosis in relation to treatment. Study of 850 patients. Cancer 56:918–928PubMedCrossRefGoogle Scholar
  3. 3.
    Llovet JM, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet 362:1907–1917PubMedCrossRefGoogle Scholar
  4. 4.
    Takenaka K, Kawahara N, Yamamoto K, Kajiyama K, Maeda T, Itasaka H, Shirabe K, Nishizaki T, Yanaga K, Sugimachi K (1996) Results of 280 liver resections for hepatocellular carcinoma. Arch Surg 131:71–76PubMedCrossRefGoogle Scholar
  5. 5.
    Farazi PA, DePinho RA (2006) Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6:674–687PubMedCrossRefGoogle Scholar
  6. 6.
    Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, Haussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378–390PubMedCrossRefGoogle Scholar
  7. 7.
    Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027PubMedCrossRefGoogle Scholar
  8. 8.
    Poon RT, Ho JW, Tong CS, Lau C, Ng IO, Fan ST (2004) Prognostic significance of serum vascular endothelial growth factor and endostatin in patients with hepatocellular carcinoma. Br J Surg 91:1354–1360PubMedCrossRefGoogle Scholar
  9. 9.
    Chao Y, Li CP, Chau GY, Chen CP, King KL, Lui WY, Yen SH, Chang FY, Chan WK, Lee SD (2003) Prognostic significance of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin in patients with resectable hepatocellular carcinoma after surgery. Ann Surg Oncol 10:355–362PubMedCrossRefGoogle Scholar
  10. 10.
    Kaposi-Novak P, Lee JS, Gomez-Quiroz L, Coulouarn C, Factor VM, Thorgeirsson SS (2006) Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest 116:1582–1595PubMedCrossRefGoogle Scholar
  11. 11.
    Osada S, Kanematsu M, Imai H, Goshima S (2008) Clinical significance of serum HGF and c-Met expression in tumor tissue for evaluation of properties and treatment of hepatocellular carcinoma. Hepatogastroenterology 55:544–549PubMedGoogle Scholar
  12. 12.
    Park WS, Dong SM, Kim SY, Na EY, Shin MS, Pi JH, Kim BJ, Bae JH, Hong YK, Lee KS, Lee SH, Yoo NJ, Jang JJ, Pack S, Zhuang Z, Schmidt L, Zbar B, Lee JY (1999) Somatic mutations in the kinase domain of the Met/hepatocyte growth factor receptor gene in childhood hepatocellular carcinomas. Cancer Res 59:307–310PubMedGoogle Scholar
  13. 13.
    Boix L, Rosa JL, Ventura F, Castells A, Bruix J, Rodes J, Bartrons R (1994) c-met mRNA overexpression in human hepatocellular carcinoma. Hepatology 19:88–91PubMedCrossRefGoogle Scholar
  14. 14.
    Ueki T, Fujimoto J, Suzuki T, Yamamoto H, Okamoto E (1997) Expression of hepatocyte growth factor and its receptor, the c-met proto-oncogene, in hepatocellular carcinoma. Hepatology 25:619–623PubMedCrossRefGoogle Scholar
  15. 15.
    Suzuki K, Hayashi N, Yamada Y, Yoshihara H, Miyamoto Y, Ito Y, Ito T, Katayama K, Sasaki Y, Ito A (1994) Expression of the c-met protooncogene in human hepatocellular carcinoma. Hepatology 20:1231–1236PubMedCrossRefGoogle Scholar
  16. 16.
    Kiss A, Wang NJ, Xie JP, Thorgeirsson SS (1997) Analysis of transforming growth factor (TGF)-alpha/epidermal growth factor receptor, hepatocyte growth Factor/c-met, TGF-beta receptor type II, and p53 expression in human hepatocellular carcinomas. Clin Cancer Res 3:1059–1066PubMedGoogle Scholar
  17. 17.
    Xin X, Yang S, Ingle G, Zlot C, Rangell L, Kowalski J, Schwall R, Ferrara N, Gerritsen ME (2001) Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. Am J Pathol 158:1111–1120PubMedCrossRefGoogle Scholar
  18. 18.
    Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3:347–361PubMedCrossRefGoogle Scholar
  19. 19.
    Pena C, Shan M, Wilhelm S, Lathia C (2008) Hepatocyte growth factor (HGF) is a prognostic biomarker for overall survival and a pharmacodynamic biomarker for sorafenib response in the SHARP phase III HCC trial. 33rd European society for medical oncology (ESMO) congress, Sept 12–16, 2008, Stockholm, Sweden. Abstract #4600Google Scholar
  20. 20.
    Liu L, Greger J, Shi H, Liu Y, Greshock J, Annan R, Halsey W, Sathe GM, Martin AM, Gilmer TM (2009) Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. Cancer Res 69:6871–6878PubMedCrossRefGoogle Scholar
  21. 21.
    Qian F, Engst S, Yamaguchi K, Yu P, Won KA, Mock L, Lou T, Tan J, Li C, Tam D, Lougheed J, Yakes FM, Bentzien F, Xu W, Zaks T, Wooster R, Greshock J, Joly AH (2009) Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases. Cancer Res 69:8009–8016PubMedCrossRefGoogle Scholar
  22. 22.
    Eder JP, Shapiro GI, Appleman LJ, Zhu AX, Miles D, Keer H, Cancilla B, Chu F, Hitchcock-Bryan S, Sherman L, McCallum S, Heath EI, Boerner SA, LoRusso PM (2010) A phase I study of foretinib, a multi-targeted inhibitor of c-Met and vascular endothelial growth factor receptor 2. Clin Cancer Res 16:3507–3516PubMedCrossRefGoogle Scholar
  23. 23.
    Huynh H, Soo KC, Chow PK, Panasci L, Tran E (2006) Xenografts of human hepatocellular carcinoma: a useful model for testing drugs. Clin Cancer Res 12:4306–4314PubMedCrossRefGoogle Scholar
  24. 24.
    Huynh H, Ngo VC, Koong HN, Poon D, Choo SP, Toh HC, Thng CH, Chow P, Ong HS, Chung A, Goh BC, Smith PD, Soo KC (2010) AZD6244 enhances the antitumor activity of sorafenib in ectopic and orthotopic models of human hepatocellular carcinoma (HCC). J Hepatol 52:79–87PubMedCrossRefGoogle Scholar
  25. 25.
    Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF (2003) Met, metastasis, motility and more. Natl Rev Mol Cell Biol 4(12):915–925CrossRefGoogle Scholar
  26. 26.
    Rosario M, Birchmeier W (2003) How to make tubes: signaling by the Met receptor tyrosine kinase. Trends Cell Biol 13:328–335PubMedCrossRefGoogle Scholar
  27. 27.
    Bussolino F, Di Renzo MF, Ziche M, Bocchietto E, Olivero M, Naldini L, Gaudino G, Tamagnone L, Coffer A, Comoglio PM (1992) Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol 119:629–641PubMedCrossRefGoogle Scholar
  28. 28.
    Cheng AL, Kang YK, Chen Z, Tsao CJ, Qin S, Kim JS, Luo R, Feng J, Ye S, Yang TS, Xu J, Sun Y, Liang H, Liu J, Wang J, Tak WY, Pan H, Burock K, Zou J, Voliotis D, Guan Z (2009) Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 10:25–34PubMedCrossRefGoogle Scholar
  29. 29.
    Huynh H, Ngo VC, Fargnoli J, Ayers M, Soo KC, Koong HN, Thng CH, Ong HS, Chung A, Chow P, Pollock P, Byron S, Tran E (2008) Brivanib alaninate, a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor tyrosine kinases, induces growth inhibition in mouse models of human hepatocellular carcinoma. Clin Cancer Res 14:6146–6153PubMedCrossRefGoogle Scholar
  30. 30.
    You WK, Sennino B, Williamson CW, Falcón B, Hashizume H, Yao LC, Aftab DT, McDonald DM (2011) VEGF and c-Met blockade amplify angiogenesis inhibition in pancreatic islet cancer. Cancer Res 71(14):4758–4768PubMedCrossRefGoogle Scholar
  31. 31.
    Sandgren EP, Quaife CJ, Pinkert CA, Palmiter RD, Brinster RL (1989) Oncogene-induced liver neoplasia in transgenic mice. Oncogene 4:715–724PubMedGoogle Scholar
  32. 32.
    Murakami H, Sanderson ND, Nagy P, Marino PA, Merlino G, Thorgeirsson SS (1993) Transgenic mouse model for synergistic effects of nuclear oncogenes and growth factors in tumorigenesis: interaction of c-myc and transforming growth factor alpha in hepatic oncogenesis. Cancer Res 53:1719–1723PubMedGoogle Scholar
  33. 33.
    Wu Y, Renard CA, Apiou F, Huerre M, Tiollais P, Dutrillaux B, Buendia MA (2002) Recurrent allelic deletions at mouse chromosomes 4 and 14 in Myc-induced liver tumors. Oncogene 21:1518–1526PubMedCrossRefGoogle Scholar
  34. 34.
    Shachaf CM, Kopelman AM, Arvanitis C, Karlsson A, Beer S, Mandl S, Bachmann MH, Borowsky AD, Ruebner B, Cardiff RD, Yang Q, Bishop JM, Contag CH, Felsher DW (2004) MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431:1112–1117PubMedCrossRefGoogle Scholar
  35. 35.
    Gallicchio M, Mitola S, Valdembri D, Fantozzi R, Varnum B, Avanzi GC, Bussolino F (2005) Inhibition of vascular endothelial growth factor receptor 2-mediated endothelial cell activation by Axl tyrosine kinase receptor. Blood 105(5):1970–1976PubMedCrossRefGoogle Scholar
  36. 36.
    Sennino B, Naylor RM, Tabruyn SP, You WK, Aftab DA, McDonald DM (2009) Reduction of tumor invasiveness and metastasis and prolongation of survival of RIP-Tag2 mice after inhibition of VEGFR plus c-Met by XL184. Mol Cancer Ther 8:A13CrossRefGoogle Scholar
  37. 37.
    Shojaei F, Lee JH, Simmons BH, Wong A, Esparza CO, Plumlee PA, Feng J, Stewart AE, Hu-Lowe DD, Christensen JG (2010) HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Res 70:10090–10100PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang YW, Su Y, Volpert OV, Vande Woude GF (2003) Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc Natl Acad Sci USA 100:12718–12723PubMedCrossRefGoogle Scholar
  39. 39.
    Loges S, Mazzone M, Hohensinner P, Carmeliet P (2009) Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited. Cancer Cell 15:167–170PubMedCrossRefGoogle Scholar
  40. 40.
    Ebos JM, Lee CR, Cruz-Munoz W, Bjarnason GA, Christensen JG, Kerbel RS (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239PubMedCrossRefGoogle Scholar
  41. 41.
    Paez-Ribes M, Allen E, Hudock J, Takeda T, Okuyama H, Vinals F, Inoue M, Bergers G, Hanahan D, Casanovas O (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231PubMedCrossRefGoogle Scholar
  42. 42.
    Comoglio PM, Giordano S, Trusolino L (2008) Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nat Rev Drug Discov 7:504–516PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Laboratory of Molecular Endocrinology, Division of Molecular and Cellular ResearchNational Cancer CentreSingaporeSingapore

Personalised recommendations