Advertisement

Angiogenesis

, Volume 15, Issue 1, pp 47–57 | Cite as

Silencing TRPM7 mimics the effects of magnesium deficiency in human microvascular endothelial cells

  • Erika Baldoli
  • Jeanette A. M. MaierEmail author
Original Paper

Abstract

Evidence has accumulated to suggest that magnesium might play a role in controlling angiogenesis. Since microvascular endothelial cells are protagonists in this process, we investigated the behavior of these cells cultured in low extracellular magnesium or silenced for its transporter Transient Receptor Potential Melastatin (TRPM)7, essential for cellular magnesium homeostasis. In particular, we focused on some crucial steps of the angiogenic process, i.e. proliferation, migration, protease production and organization in tridimensional structures. Silencing TRPM7 mimics the effects of low extracellular magnesium on human microvascular endothelial cells (HMEC). Indeed, while no effects were observed on the production of metalloproteases and on tridimensional organization on matrigel, both magnesium deficiency and silencing of TRPM7 impair cell migration and inhibit growth by arresting the cells in the G0/G1 and G2/M phases of the cell cycle. Since low extracellular magnesium markedly decreases TRPM7 in HMEC, we suggest that TRPM7 downregulation might mediate low magnesium-induced inhibition of cell growth and migration. Human endothelial cells from the umbilical vein are growth inhibited by low magnesium and growth stimulated after TRPM7 silencing. An impairment of ERK phosphorylation in HMEC silencing TRPM7 is responsible, in part, for the different proliferative behavior of these two cell types. We broadened our studies also to endothelial colony-forming cells and found that they are sensitive to fluctuations of the concentrations of extracellular magnesium, while their proliferation rate is not modulated by TRPM7 silencing. Our results point to magnesium and TRPM7 as a modulators of the angiogenic phenotype of microvascular endothelial cells.

Keywords

Angiogenesis TRPM7 Magnesium Vascular endothelial cells 

Abbreviations

TRPM

Transient receptor potential melastatin

HMEC

Human microvascular endothelial cells

HUVEC

Human endothelial cells of the umbilical vein

Mg

Magnesium

MMP

Matrix metalloproteases

FBS

Fetal bovine serum

Notes

Acknowledgments

This work was supported by FIRST-Università di Milano and ESA to JM.

Conflict of interest

The authors disclose no conflict of interest.

References

  1. 1.
    Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936PubMedCrossRefGoogle Scholar
  2. 2.
    Gerger A, Labonte M, Lenz HJ (2011) Molecular predictors of response to antiangiogenesis therapies. Cancer J 17:134–141PubMedCrossRefGoogle Scholar
  3. 3.
    Brakenhielm E, Cao R, Cao Y (2001) Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. FASEB J 15:1798–1800PubMedGoogle Scholar
  4. 4.
    Kim MH (2003) Flavonoids inhibit VEGF/bFGF-induced angiogenesis in vitro by inhibiting the matrix-degrading proteases. J Cell Biochem 89:529–538PubMedCrossRefGoogle Scholar
  5. 5.
    Harris ED (2004) A requirement for copper in angiogenesis. Nutr Rev 62:60–64PubMedCrossRefGoogle Scholar
  6. 6.
    Wolf F, Trapani V (2008) Cell (patho)physiology of magnesium. Clin Sci 114:27–35PubMedCrossRefGoogle Scholar
  7. 7.
    Nasulewicz A, Wietrzyk J, Wolf FI, Dzimira S, Maier JA, Rayssiguier Y, Mazur A, Opolski A (2004) Magnesium deficiency inhibits primary tumor growth but favors metastasis in mice. Biochim Biophys Acta 1739:26–32PubMedGoogle Scholar
  8. 8.
    Maier JA, Nasulewicz-Goldeman A, Simonacci M, Mazur A, Wolf FI (2007) Insights into the mechanisms involved in magnesium-dependent inhibition of primary tumor growth. Nutr Cancer 59:192–198PubMedCrossRefGoogle Scholar
  9. 9.
    Torii S, Kobayashi K, Takahashi M, Katahira K, Goryo K, Matsushita N, Yasumoto K, Fujii-Kuriyama Y, Sogawa K (2009) Magnesium deficiency causes loss of response to intermittent hypoxia in paraganglion cells. J Biol Chem 284:19077–19089PubMedCrossRefGoogle Scholar
  10. 10.
    Bernardini D, Nasulewicz A, Mazur A, Maier JA (2005) Magnesium and microvascular endothelial cells: a role in inflammation and angiogenesis. Frontiers Biosci 10:1177–1182CrossRefGoogle Scholar
  11. 11.
    Ford ES, Mokdad AH (2003) Dietary magnesium intake in a national sample of US adults. J Nutr 133:2879–2882PubMedGoogle Scholar
  12. 12.
    Nadler JL, Rude RK (1995) Disorders of magnesium metabolism. Endocrinol Metab Clin North Am 24:623–641PubMedGoogle Scholar
  13. 13.
    Wolf FI, Cittadini AR, Maier JA (2009) Magnesium and tumors: ally or foe? Cancer Treatment Rev 35:378–382CrossRefGoogle Scholar
  14. 14.
    Schlingmann KP, Waldegger S, Konrad M, Chubanov V, Gudermann T (2007) TRPM6 and TRPM7-Gatekeepers of human magnesium metabolism. Biochim Biophys Acta 1772:813–821PubMedGoogle Scholar
  15. 15.
    Ryazanova LV, Rondon LJ, Zierler S, Hu Z, Galli J, Yamaguchi TP, Mazur A, Fleig A, Ryazanov AG (2010) TRPM7 is essential for Mg homeostasis in mammals. Nat Commun 1:109PubMedCrossRefGoogle Scholar
  16. 16.
    Mariotti M, Castiglioni S, Garcia-Manteiga J, Beguinot L, Maier JA (2009) HD-PTP inhibits endothelial migration through its interaction with Src. Int J Biochem Cell Biol 41:687–693PubMedCrossRefGoogle Scholar
  17. 17.
    Vailhé B, Vittet D, Feige J–J (2001) In vitro models of vasculogenesis and angiogenesis. Lab Invest 81:439–452PubMedCrossRefGoogle Scholar
  18. 18.
    Abed E, Moreau R (2009) Importance of melastatin-like transient receptor potential 7 and magnesium in the stimulation of osteoblast proliferation and migration by platelet-derived growth factor. Am J Physiol Cell Physiol 297:C360–C368PubMedCrossRefGoogle Scholar
  19. 19.
    Ferré S, Baldoli E, Leidi M, Maier JA (2010) Magnesium deficiency promotes a proatherogenic phenotype in cultured human endothelial cells via activation of NFkB. Biochim Biophys Acta 1802:952–958PubMedGoogle Scholar
  20. 20.
    Banai S, Haggroth L, Epstein SE, Casscells W (1990) Influence of extracellular magnesium on capillary endothelial cell proliferation and migration. Circ Res 67:645–650PubMedGoogle Scholar
  21. 21.
    Maier JA, Bernardini D, Rayssiguier Y, Mazur A (2004) High concentrations of magnesium modulate vascular endothelial behaviour in vitro. Biochim Biophys Acta 1689:6–12PubMedGoogle Scholar
  22. 22.
    Wolf FI, Trapani V, Simonacci M, Ferré S, Maier JA (2008) Magnesium deficiency and endothelial dysfunction: is oxidative stress involved? Magnes Res 21:58–64PubMedGoogle Scholar
  23. 23.
    Guilbert A, Gautier M, Dhennin-Duthille I, Haren N, Sevestre H et al (2009) Evidence that TRPM7 is required for breast cancer cell proliferation. Am J Physiol Cell Physiol 297(3):C493–C502PubMedCrossRefGoogle Scholar
  24. 24.
    Inoue K, Xiong ZG (2009) Silencing TRPM7 promotes growth/proliferation and nitric oxide production of vascular endothelial cells via the ERK pathway. Cardiovasc Res 83(3):547–557PubMedCrossRefGoogle Scholar
  25. 25.
    Hong BZ, Kang HS, So JN, Kim HN, Park SA, Kim SJ, Kimm KR, Kwak YG (2006) Vascular endothelial growth factor increases the intracellular magnesium. Biochem Biophys Res Commun 347:496–501PubMedCrossRefGoogle Scholar
  26. 26.
    Hong BZ, Park SA, Kim HN, Ma TZ, Kim HG, Kang HS, Kwak YG (2009) Basic fibroblast growth factor increases intracellular magnesium concentration through the specific signaling pathways. Mol and Cells 28:13–17CrossRefGoogle Scholar
  27. 27.
    Jung YS, Qian Y, Chen X (2010) Examination of the expanding pathways for the regulation of p21 expression and activity. Cell Signal 22:1003–1012PubMedCrossRefGoogle Scholar
  28. 28.
    Reinisch A, Hofmann NA, Obenauf K, Kashofer AC, Rohde E, Schallmoser K, Flicker K, Lanzer G, Linkesch W, Speicher MR, Strunk D (2009) Humanized large-scale expanded endothelial colony—forming cells function in vitro and in vivo. Blood 11:6716–6725CrossRefGoogle Scholar
  29. 29.
    Maier JA, Malpuech C, Zimowska W, Rayssiguier Y, Mazur A (2004) Low magnesium promotes endothelial cell dysfunction: implications for atherosclerosis, inflammation and thrombosis. Biochim Biophys Acta 1689:13–21PubMedGoogle Scholar
  30. 30.
    Romani AM (2011) Cellular magnesium homeostasis. Arch Biochem Biophys 512:1–23PubMedCrossRefGoogle Scholar
  31. 31.
    Chi JT, Chang HY, Haraldsen G, Jahnsen FL, Troyanskaya OG, Chang DS, Wang Z, Rockson SG, Van de Rijn M, Botstein D, Brown PO (2003) Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci USA 100(19):10623–10628PubMedCrossRefGoogle Scholar
  32. 32.
    Clark K, Langeslag M, Van Leeuwen B, Ran L, Ryazanov AG, Figdor CG, Moolenaar WH, Jalink K, Van Leeuwen FN (2006) TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J 25(2):290–301PubMedCrossRefGoogle Scholar
  33. 33.
    Wei C, Wang X, Chen M, Ouyang K, Song LS, Cheng H (2009) Calcium flickers steers cell migration. Nature 457:901–905PubMedCrossRefGoogle Scholar
  34. 34.
    Chen JP, Luan Y, You CX, Chen XH, Luo RC, Li R (2010) TRPM7 regulates the migration of human nasopharyngeal carcinoma cell by mediating Ca(2 +) influx. Cell Calcium 47(5):425–432PubMedCrossRefGoogle Scholar
  35. 35.
    Su LT, Liu W, Chen HC, Gonzàlez-Pagan O, Habas R, Runnels LW (2011) TRPM7 regulates polarized cell movements. Biochem J 434(3):513–521PubMedCrossRefGoogle Scholar
  36. 36.
    Leidi M, Dellera F, Mariotti M, Maier JA (2011) High magnesium inhibits human osteoblast differentiation in vitro. Magnes Res 24:1–6PubMedGoogle Scholar
  37. 37.
    Abed E, Martineau C, Moreau R (2011) Role of melastatin transient receptor potential 7 channels in the osteoblastic differentiation of murine MC3T3 cells. Calcif Tissue Int 88(3):246–253PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Dipartimento di Scienze Cliniche Luigi SaccoUniversità di MilanoMilanoItaly

Personalised recommendations