Advertisement

Angiogenesis

, Volume 14, Issue 3, pp 345–354 | Cite as

TM4SF1: a tetraspanin-like protein necessary for nanopodia formation and endothelial cell migration

  • Andrew Zukauskas
  • Anne Merley
  • Dan Li
  • Lay-Hong Ang
  • Tracey E. Sciuto
  • Samantha Salman
  • Ann M. Dvorak
  • Harold F. DvorakEmail author
  • Shou-Ching Shih JaminetEmail author
Original Paper

Abstract

Transmembrane-4-L-six-family-1 (TM4SF1) is a tetraspanin-like membrane protein that is highly and selectively expressed by cultured endothelial cells (EC) and, in vivo, by EC lining angiogenic tumor blood vessels. TM4SF1 is necessary for the formation of unusually long (up to a 50 μm), thin (~100–300 nm wide), F-actin-poor EC cell projections that we term ‘nanopodia’. Immunostaining of nanopodia at both the light and electron microsopic levels localized TM4SF1 in a regularly spaced, banded pattern, forming TM4FS1-enriched domains. Live cell imaging of GFP-transduced HUVEC demonstrated that EC project nanopodia as they migrate and interact with neighboring cells. When TM4SF1 mRNA levels in EC were increased from the normal ~90 mRNA copies/cell to ~400 copies/cell through adenoviral transduction, EC projected more and longer nanopodia from the entire cell circumference but were unable to polarize or migrate effectively. When fibroblasts, which normally express TM4SF1 at ~5 copies/cell, were transduced to express TM4SF1 at EC-like levels, they formed typical TM4SF1-banded nanopodia, and broadened, EC-like lamellipodia. Mass-spectrometry demonstrated that TM4SF1 interacted with myosin-10 and β-actin, proteins involved in filopodia formation and cell migration. In summary, TM4SF1, like genuine tetraspanins, serves as a molecular organizer that interacts with membrane and cytoskeleton-associated proteins and uniquely initiates the formation of nanopodia and facilitates cell polarization and migration.

Keywords

TM4SF1 Endothelial cell Nanopodia Myosin-10 β-actin 

Notes

Acknowledgments

We thank Dr. Youichiro Wada for helpful discussions. This work was supported by NIH grant P01 CA92644 and by a contract from the National Foundation for Cancer Research.

Supplementary material

10456_2011_9218_MOESM1_ESM.ppt (557 kb)
Supplementary material 1 (PPT 557 kb)

Supplementary material 2 (MOV 6,894 kb)

Supplementary material 3 (MOV 16,580 kb)

References

  1. 1.
    Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6(10):801–811PubMedCrossRefGoogle Scholar
  2. 2.
    Hemler ME (2008) Targeting of tetraspanin proteins: potential benefits and strategies. Nat Rev Drug Discov 7(9):747–758PubMedCrossRefGoogle Scholar
  3. 3.
    Wright MD, Ni J, Rudy GB (2000) The L6 membrane proteins: a new four-transmembrane superfamily. Protein Sci 9(8):1594–1600PubMedCrossRefGoogle Scholar
  4. 4.
    Hellstrom I, Horn D, Linsley P, Brown JP, Brankovan V, Hellstrom KE (1986) Monoclonal mouse antibodies raised against human lung carcinoma. Cancer Res 46(8):3917–3923PubMedGoogle Scholar
  5. 5.
    Chang YW, Chen SC, Cheng EC, Ko YP, Lin YC, Kao YR, Tsay YG, Yang PC, Wu CW, Roffler SR (2005) CD13 (aminopeptidase N) can associate with tumor-associated antigen L6 and enhance the motility of human lung cancer cells. Int J Cancer 116(2):243–252PubMedCrossRefGoogle Scholar
  6. 6.
    Kao YR, Shih JY, Wen WC, Ko YP, Chen BM, Chan YL, Chu YW, Yang PC, Wu CW, Roffler SR (2003) Tumor-associated antigen L6 and the invasion of human lung cancer cells. Clin Cancer Res 9(7):2807–2816PubMedGoogle Scholar
  7. 7.
    Shih SC, Zukauskas A, Li D, Liu G, Ang LH, Nagy JA, Brown LF, Dvorak HF (2009) The L6 protein TM4SF1 is critical for endothelial cell function and tumor angiogenesis. Cancer Res 69(8):3272–3277PubMedCrossRefGoogle Scholar
  8. 8.
    Takahashi T, Takahashi K, Daniel TO (1999) High-efficiency and low-toxicity adenovirus-assisted endothelial transfection. In: Baker AH (ed) Methods in molecular medicine, vascular disease: molecular biology and gene therapy protocols. ©Humana Press, Totowa, pp 307–314Google Scholar
  9. 9.
    Shih SC, Smith LE (2005) Quantitative multi-gene transcriptional profiling using real-time PCR with a master template. Exp Mol Pathol 79(1):14–22PubMedCrossRefGoogle Scholar
  10. 10.
    Wada Y, Li D, Merley A, Zukauskas A, Aird WC, Dvorak HF, Shih SC (2010) A multi-gene transcriptional profiling approach to the discovery of cell signature markers. Cytotechnology 63(1):25–33PubMedCrossRefGoogle Scholar
  11. 11.
    Brown LF, Lanir N, McDonagh J, Tognazzi K, Dvorak AM, Dvorak HF (1993) Fibroblast migration in fibrin gel matrices. Am J Pathol 142(1):273–283PubMedGoogle Scholar
  12. 12.
    Rodriguez LG, Wu X, Guan JL (2005) Wound-healing assay. Methods Mol Biol 294:23–29PubMedGoogle Scholar
  13. 13.
    Deissler H, Kuhn EM, Lang GE, Deissler H (2007) Tetraspanin CD9 is involved in the migration of retinal microvascular endothelial cells. Int J Mol Med 20(5):643–652PubMedGoogle Scholar
  14. 14.
    Marken JS, Schieven GL, Hellstrom I, Hellstrom KE, Aruffo A (1992) Cloning and expression of the tumor-associated antigen L6. Proc Natl Acad Sci USA 89(8):3503–3507PubMedCrossRefGoogle Scholar
  15. 15.
    Marken JS, Bajorath J, Edwards CP, Farr AG, Schieven GL, Hellstrom I, Hellstrom KE, Aruffo A (1994) Membrane topology of the L6 antigen and identification of the protein epitope recognized by the L6 monoclonal antibody. J Biol Chem 269(10):7397–7401PubMedGoogle Scholar
  16. 16.
    Lekishvili T, Fromm E, Mujoomdar M, Berditchevski F (2008) The tumour-associated antigen L6 (L6-Ag) is recruited to the tetraspanin-enriched microdomains: implication for tumour cell motility. J Cell Sci 121(Pt 5):685–694PubMedCrossRefGoogle Scholar
  17. 17.
    Berg JS, Derfler BH, Pennisi CM, Corey DP, Cheney RE (2000) Myosin-X: a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin. J Cell Sci 113(Pt 19):3439–3451PubMedGoogle Scholar
  18. 18.
    Zhang H, Berg JS, Li Z, Wang Y, Lang P, Sousa AD, Bhaskar A, Cheney RE, Stromblad S (2004) Myosin-X provides a motor-based link between integrins and the cytoskeleton. Nat Cell Biol 6(6):523–531PubMedCrossRefGoogle Scholar
  19. 19.
    Weber KL, Sokac AM, Berg JS, Cheney RE, Bement WM (2004) A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 431(7006):325–329PubMedCrossRefGoogle Scholar
  20. 20.
    Gupton SL, Gertler FB (2007) Filopodia: the fingers that do the walking. Sci STKE 2007(400):re5PubMedCrossRefGoogle Scholar
  21. 21.
    Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol 9(6):446–454PubMedCrossRefGoogle Scholar
  22. 22.
    Ohta Y, Suzuki N, Nakamura S, Hartwig JH, Stossel TP (1999) The small GTPase RalA targets filamin–induce filopodia. Proc Natl Acad Sci USA 96(5):2122–2128PubMedCrossRefGoogle Scholar
  23. 23.
    Itoh T, De Camilli P (2006) BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. Biochim Biophys Acta 1761(8):897–912PubMedGoogle Scholar
  24. 24.
    Ahmed S, Goh WI, Bu W (2009) I-BAR domains, IRSp53 and filopodium formation. Semin Cell Dev Biol 21(4):350–356PubMedCrossRefGoogle Scholar
  25. 25.
    Saarikangas J, Zhao H, Pykalainen A, Laurinmaki P, Mattila PK, Kinnunen PK, Butcher SJ, Lappalainen P (2009) Molecular mechanisms of membrane deformation by I-BAR domain proteins. Curr Biol 19(2):95–107PubMedCrossRefGoogle Scholar
  26. 26.
    Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303(5660):1007–1010PubMedCrossRefGoogle Scholar
  27. 27.
    Gerdes HH, Carvalho RN (2008) Intercellular transfer mediated by tunneling nanotubes. Curr Opin Cell Biol 20(4):470–475PubMedCrossRefGoogle Scholar
  28. 28.
    Wang X, Veruki ML, Bukoreshtliev NV, Hartveit E, Gerdes HH (2010) Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels. Proc Natl Acad Sci USA 107(40):17194–17199PubMedCrossRefGoogle Scholar
  29. 29.
    Kozma R, Ahmed S, Best A, Lim L (1995) The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in swiss 3T3 fibroblasts. Mol Cell Biol 15(4):1942–1952PubMedGoogle Scholar
  30. 30.
    Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81(1):53–62PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Andrew Zukauskas
    • 1
  • Anne Merley
    • 1
  • Dan Li
    • 1
  • Lay-Hong Ang
    • 2
  • Tracey E. Sciuto
    • 1
  • Samantha Salman
    • 1
  • Ann M. Dvorak
    • 1
  • Harold F. Dvorak
    • 1
    Email author
  • Shou-Ching Shih Jaminet
    • 1
    Email author
  1. 1.Center for Vascular Biology Research and Department of PathologyBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUSA
  2. 2.Imaging Core FacilityBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUSA

Personalised recommendations