, Volume 13, Issue 4, pp 327–335 | Cite as

Targeting NF-κB in infantile hemangioma-derived stem cells reduces VEGF-A expression

  • Shoshana Greenberger
  • Irit Adini
  • Elisa Boscolo
  • John B. Mulliken
  • Joyce Bischoff
Original Paper



Infantile hemangioma (IH) is a most common tumor of infancy. Using infantile hemangioma-derived stem cells (HemSCs), we recently demonstrated that corticosteroids suppress the expression of VEGF-A, monocyte chemoattractant protein-1 (MCP-1), urokinase plasminogen activator receptor (uPAR), and interleukin-6 (IL-6); each of these are known targets of the transcription factor nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB). In the present study, we examined the expression of these NF-κB target genes in IH tissue specimens and the effect of NF-κB regulation on the expression of pro-angiogenic cytokines, and in particular VEGF-A, in HemSCs.

Materials and methods

RNA extracted from IH tissue and hemangioma-derived stem cells (HemSCs) was used to analyze NF-κB target gene expression by reverse transcription–quantitative PCR (RT-qPCR). The effects of NF-κB blockade were examined in HemSCs. Immunostaining, immunoblotting and ELISA were used to assess protein expression.


MCP-1, uPAR, and IL-6 were found to be differentially expressed in proliferating versus involuting IH. Corticosteroids suppressed NF-κB activity of HemSCs. Velcade (Bortezomib), a proteosome inhibitor that can indirectly inhibit NF-κB, impaired HemSCs viability and expression of pro-angiogenic factors. Furthermore, specific inhibition of NF-κB resulted in suppression of VEGF-A.


We demonstrate expression of NF-κB target genes in proliferating IH. In addition, we show that the expression of several pro-angiogenic factors in HemSCs, and in particular VEGF–A, is regulated by NF-B activity.


Hemangioma-derived stem cells Infantile hemangioma Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) Urokinase plasminogen activator receptor (uPAR) VEGF 

Supplementary material

10456_2010_9189_MOESM1_ESM.docx (223 kb)
Supplementary material 1 (DOCX 222 kb)


  1. 1.
    Mulliken J (1988) Diagnosis and natural history of hemangiomas. In: Young AE, Mulliken JB (eds) Vascular birthmarks: hemangiomas and malformations. WB Saunders, PhiladelphiaGoogle Scholar
  2. 2.
    Drolet BA, Esterly NB, Frieden IJ (1999) Hemangiomas in children. N Engl J Med 341:173–181CrossRefPubMedGoogle Scholar
  3. 3.
    Frieden IJ, Eichenfield LF, Esterly NB, Geronemus R, Mallory SB (1997) Guidelines of care for hemangiomas of infancy. American Academy of Dermatology Guidelines/Outcomes Committee. J Am Acad Dermatol 37:631–637CrossRefPubMedGoogle Scholar
  4. 4.
    Khan ZA, Boscolo E, Picard A, Psutka S, Melero-Martin JM, Bartch TC, Mulliken JB, Bischoff J (2008) Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. J Clin Invest 118:2592–2599PubMedGoogle Scholar
  5. 5.
    Greenberger S, Boscolo E, Adini I, Mulliken JB, Bischoff J (2010) Corticosteroid suppression of VEGF-A in infantile hemangioma-derived stem cells. N Engl J Med 362:1005–1013CrossRefPubMedGoogle Scholar
  6. 6.
    Wang Y, Dang J, Wang H, Allgayer H, Murrell GA, Boyd D (2000) Identification of a novel nuclear factor-kappaB sequence involved in expression of urokinase-type plasminogen activator receptor. Eur J Biochem 267:3248–3254CrossRefPubMedGoogle Scholar
  7. 7.
    Ueda A, Ishigatsubo Y, Okubo T, Yoshimura T (1997) Transcriptional regulation of the human monocyte chemoattractant protein-1 gene. Cooperation of two NF-kappaB sites and NF-kappaB/Rel subunit specificity. J Biol Chem 272:31092–31099CrossRefPubMedGoogle Scholar
  8. 8.
    Karst AM, Gao K, Nelson CC, Li G (2009) Nuclear factor kappa B subunit p50 promotes melanoma angiogenesis by upregulating interleukin-6 expression. Int J Cancer 124:494–501CrossRefPubMedGoogle Scholar
  9. 9.
    Vincenti MP, Coon CI, Brinckerhoff CE (1998) Nuclear factor kappaB/p50 activates an element in the distal matrix metalloproteinase 1 promoter in interleukin-1beta-stimulated synovial fibroblasts. Arthritis Rheum 41:1987–1994CrossRefPubMedGoogle Scholar
  10. 10.
    Hozawa S, Nakamura T, Nakano M, Adachi M, Tanaka H, Takahashi Y, Tetsuya M, Miyata N, Soma H, Hibi T (2008) Induction of matrix metalloproteinase-1 gene transcription by tumour necrosis factor alpha via the p50/p50 homodimer of nuclear factor-kappa B in activated human hepatic stellate cells. Liver Int 28:1418–1425CrossRefPubMedGoogle Scholar
  11. 11.
    Kumar A, Takada Y, Boriek AM, Aggarwal BB (2004) Nuclear factor-kappaB: its role in health and disease. J Mol Med 82:434–448CrossRefPubMedGoogle Scholar
  12. 12.
    Yamamoto Y, Gaynor RB (2001) Role of the NF-kappaB pathway in the pathogenesis of human disease states. Curr Mol Med 1:287–296CrossRefPubMedGoogle Scholar
  13. 13.
    Stehlik C, de Martin R, Kumabashiri I, Schmid JA, Binder BR, Lipp J (1998) Nuclear factor (NF)-kappaB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J Exp Med 188:211–216CrossRefPubMedGoogle Scholar
  14. 14.
    Brouard S, Berberat PO, Tobiasch E, Seldon MP, Bach FH, Soares MP (2002) Heme oxygenase-1-derived carbon monoxide requires the activation of transcription factor NF-kappa B to protect endothelial cells from tumor necrosis factor-alpha-mediated apoptosis. J Biol Chem 277:17950–17961CrossRefPubMedGoogle Scholar
  15. 15.
    Cooper JT, Stroka DM, Brostjan C, Palmetshofer A, Bach FH, Ferran C (1996) A20 blocks endothelial cell activation through a NF-kappaB-dependent mechanism. J Biol Chem 271:18068–18073CrossRefPubMedGoogle Scholar
  16. 16.
    Tabruyn SP, Griffioen AW (2007) A new role for NF-kappaB in angiogenesis inhibition. Cell Death Differ 14:1393–1397CrossRefPubMedGoogle Scholar
  17. 17.
    Aurora AB, Biyashev D, Mirochnik Y, Zaichuk TA, Sanchez-Martinez C, Renault MA, Losordo D, Volpert OV NF-{kappa}B balances vascular regression and angiogenesis via chromatin remodeling and NFAT displacement. BloodGoogle Scholar
  18. 18.
    Kisseleva T, Song L, Vorontchikhina M, Feirt N, Kitajewski J, Schindler C (2006) NF-kappaB regulation of endothelial cell function during LPS-induced toxemia and cancer. J Clin Invest 116:2955–2963CrossRefPubMedGoogle Scholar
  19. 19.
    Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S, Bischoff J (2007) In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 109:4761–4768CrossRefPubMedGoogle Scholar
  20. 20.
    Khan ZA, Melero-Martin JM, Wu X, Paruchuri S, Boscolo E, Mulliken JB, Bischoff J (2006) Endothelial progenitor cells from infantile hemangioma and umbilical cord blood display unique cellular responses to endostatin. Blood 108:915–921CrossRefPubMedGoogle Scholar
  21. 21.
    Roelofs JJ, Rowshani AT, van den Berg JG, Claessen N, Aten J, ten Berge IJ, Weening JJ, Florquin S (2003) Expression of urokinase plasminogen activator and its receptor during acute renal allograft rejection. Kidney Int 64:1845–1853CrossRefPubMedGoogle Scholar
  22. 22.
    Zins K, Abraham D, Sioud M, Aharinejad S (2007) Colon cancer cell-derived tumor necrosis factor-alpha mediates the tumor growth-promoting response in macrophages by up-regulating the colony-stimulating factor-1 pathway. Cancer Res 67:1038–1045CrossRefPubMedGoogle Scholar
  23. 23.
    Isik FF, Rand RP, Gruss JS, Benjamin D, Alpers CE (1996) Monocyte chemoattractant protein-1 mRNA expression in hemangiomas and vascular malformations. J Surg Res 61:71–76CrossRefPubMedGoogle Scholar
  24. 24.
    Hasan Q, Tan ST, Gush J, Peters SG, Davis PF (2000) Steroid therapy of a proliferating hemangioma: histochemical and molecular changes. Pediatrics 105:117–120CrossRefPubMedGoogle Scholar
  25. 25.
    Huai Q, Mazar AP, Kuo A, Parry GC, Shaw DE, Callahan J, Li Y, Yuan C, Bian C, Chen L et al (2006) Structure of human urokinase plasminogen activator in complex with its receptor. Science 311:656–659CrossRefPubMedGoogle Scholar
  26. 26.
    Blasi F, Carmeliet P (2002) uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 3:932–943CrossRefPubMedGoogle Scholar
  27. 27.
    Mazar AP (2008) Urokinase plasminogen activator receptor choreographs multiple ligand interactions: implications for tumor progression and therapy. Clin Cancer Res 14:5649–5655CrossRefPubMedGoogle Scholar
  28. 28.
    Wong ET, Tergaonkar V (2009) Roles of NF-kappaB in health and disease: mechanisms and therapeutic potential. Clin Sci (Lond) 116:451–465CrossRefGoogle Scholar
  29. 29.
    Schwabe RF, Sakurai H (2005) IKKbeta phosphorylates p65 at S468 in transactivaton domain 2. FASEB J 19:1758–1760PubMedGoogle Scholar
  30. 30.
    Mattioli I, Geng H, Sebald A, Hodel M, Bucher C, Kracht M, Schmitz ML (2006) Inducible phosphorylation of NF-kappa B p65 at serine 468 by T cell costimulation is mediated by IKK epsilon. J Biol Chem 281:6175–6183CrossRefPubMedGoogle Scholar
  31. 31.
    Bredel M, Bredel C, Juric D, Duran GE, Yu RX, Harsh GR, Vogel H, Recht LD, Scheck AC, Sikic BI (2006) Tumor necrosis factor-alpha-induced protein 3 as a putative regulator of nuclear factor-kappaB-mediated resistance to O6-alkylating agents in human glioblastomas. J Clin Oncol 24:274–287CrossRefPubMedGoogle Scholar
  32. 32.
    Wei Y, Sowers JR, Clark SE, Li W, Ferrario CM, Stump CS (2008) Angiotensin II-induced skeletal muscle insulin resistance mediated by NF-kappaB activation via NADPH oxidase. Am J Endocrinol Metab 294:E345–351CrossRefGoogle Scholar
  33. 33.
    May MJ, D’Acquisto F, Madge LA, Glockner J, Pober JS, Ghosh S (2000) Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. Science 289:1550–1554CrossRefPubMedGoogle Scholar
  34. 34.
    Strickland I, Ghosh, S (2006) Use of cell permeable NBD peptides for suppression of inflammation. Ann Rheum Dis 65(Suppl 3):iii75–82Google Scholar
  35. 35.
    Palombella VJ, Rando OJ, Goldberg AL, Maniatis T (1994) The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78:773–785CrossRefPubMedGoogle Scholar
  36. 36.
    Read MA, Neish AS, Luscinskas FW, Palombella VJ, Maniatis T, Collins T (1995) The proteasome pathway is required for cytokine-induced endothelial-leukocyte adhesion molecule expression. Immunity 2:493–506CrossRefPubMedGoogle Scholar
  37. 37.
    Yang Y, Kitagaki J, Wang H, Hou DX, Perantoni AO (2009) Targeting the ubiquitin-proteasome system for cancer therapy. Cancer Sci 100:24–28CrossRefPubMedGoogle Scholar
  38. 38.
    Tobe M, Isobe Y, Tomizawa H, Nagasaki T, Takahashi H, Hayashi H (2003) A novel structural class of potent inhibitors of NF-kappa B activation: structure-activity relationships and biological effects of 6-aminoquinazoline derivatives. Bioorg Med Chem 11:3869–3878CrossRefPubMedGoogle Scholar
  39. 39.
    Takahashi K, Mulliken JB, Kozakewich HP, Rogers RA, Folkman J, Ezekowitz RA (1994) Cellular markers that distinguish the phases of hemangioma during infancy and childhood. J Clin Invest 93:2357–2364CrossRefPubMedGoogle Scholar
  40. 40.
    Ritter MR, Dorrell MI, Edmonds J, Friedlander SF, Friedlander M (2002) Insulin-like growth factor 2 and potential regulators of hemangioma growth and involution identified by large-scale expression analysis. Proc Natl Acad Sci USA 99:7455–7460CrossRefPubMedGoogle Scholar
  41. 41.
    Scatena M, Almeida M, Chaisson ML, Fausto N, Nicosia RF, Giachelli CM (1998) NF-kappaB mediates alphavbeta3 integrin-induced endothelial cell survival. J Cell Biol 141:1083–1093CrossRefPubMedGoogle Scholar
  42. 42.
    Klein S, de Fougerolles AR, Blaikie P, Khan L, Pepe A, Green CD, Koteliansky V, Giancotti FG (2002) Alpha 5 beta 1 integrin activates an NF-kappa B-dependent program of gene expression important for angiogenesis and inflammation. Mol Cell Biol 22:5912–5922CrossRefPubMedGoogle Scholar
  43. 43.
    Franco AV, Zhang XD, Van Berkel E, Sanders JE, Zhang XY, Thomas WD, Nguyen T, Hersey P (2001) The role of NF-kappa B in TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of melanoma cells. J Immunol 166:5337–5345PubMedGoogle Scholar
  44. 44.
    Calicchio ML, Collins T, Kozakewich HP (2009) Identification of signaling systems in proliferating and involuting phase infantile hemangiomas by genome-wide transcriptional profiling. Am J Pathol 174:1638–1649CrossRefPubMedGoogle Scholar
  45. 45.
    Orrington-Myers J, Gao X, Kouklis P, Broman M, Rahman A, Vogel SM, Malik AB (2006) Regulation of lung neutrophil recruitment by VE-cadherin. Am J Physiol Lung Cell Mol Physiol 291:L764–771CrossRefPubMedGoogle Scholar
  46. 46.
    Romashkova JA, Makarov SS (1999) NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401:86–90CrossRefPubMedGoogle Scholar
  47. 47.
    Dano K, Romer J, Nielsen BS, Bjorn S, Pyke C, Rygaard J, Lund LR (1999) Cancer invasion and tissue remodeling–cooperation of protease systems and cell types. APMIS 107:120–127CrossRefPubMedGoogle Scholar
  48. 48.
    Tao Y, Williams-Skipp C, Scheinman RI (2001) Mapping of glucocorticoid receptor DNA binding domain surfaces contributing to transrepression of NF-kappa B and induction of apoptosis. J Biol Chem 276:2329–2332CrossRefPubMedGoogle Scholar
  49. 49.
    Caldenhoven E, Liden J, Wissink S, Van de Stolpe A, Raaijmakers J, Koenderman L, Okret S, Gustafsson JA, Van der Saag PT (1995) Negative cross-talk between RelA and the glucocorticoid receptor: a possible mechanism for the antiinflammatory action of glucocorticoids. Mol Endocrinol 9:401–412CrossRefPubMedGoogle Scholar
  50. 50.
    Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M (1995) Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science 270:286–290CrossRefPubMedGoogle Scholar
  51. 51.
    Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin SC, Heyman RA, Rose DW, Glass CK et al (1996) A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85:403–414CrossRefPubMedGoogle Scholar
  52. 52.
    Lee SK, Kim HJ, Na SY, Kim TS, Choi HS, Im SY, Lee JW (1998) Steroid receptor coactivator-1 coactivates activating protein-1-mediated transactivations through interaction with the c-Jun and c-Fos subunits. J Biol Chem 273:16651–16654CrossRefPubMedGoogle Scholar
  53. 53.
    Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ (2001) Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 20:4188–4197CrossRefPubMedGoogle Scholar
  54. 54.
    Shibata A, Nagaya T, Imai T, Funahashi H, Nakao A, Seo H (2002) Inhibition of NF-kappaB activity decreases the VEGF mRNA expression in MDA-MB-231 breast cancer cells. Breast Cancer Res Treat 73:237–243CrossRefPubMedGoogle Scholar
  55. 55.
    Kiriakidis S, Andreakos E, Monaco C, Foxwell B, Feldmann M, Paleolog E (2003) VEGF expression in human macrophages is NF-kappaB-dependent: studies using adenoviruses expressing the endogenous NF-kappaB inhibitor IkappaBalpha and a kinase-defective form of the IkappaB kinase 2. J Cell Sci 116:665–674CrossRefPubMedGoogle Scholar
  56. 56.
    Basseres DS, Baldwin AS (2006) Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene 25:6817–6830CrossRefPubMedGoogle Scholar
  57. 57.
    Schmidt D, Textor B, Pein OT, Licht AH, Andrecht S, Sator-Schmitt M, Fusenig NE, Angel P, Schorpp-Kistner M (2007) Critical role for NF-kappaB-induced JunB in VEGF regulation and tumor angiogenesis. EMBO J 26:710–719CrossRefPubMedGoogle Scholar
  58. 58.
    Karin M, Yamamoto Y, Wang QM (2004) The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 3:17–26CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Shoshana Greenberger
    • 1
  • Irit Adini
    • 1
  • Elisa Boscolo
    • 1
  • John B. Mulliken
    • 2
  • Joyce Bischoff
    • 1
  1. 1.Vascular Biology Program and Department of SurgeryChildren’s Hospital Boston and Harvard Medical SchoolBostonUSA
  2. 2.Department of Plastic SurgeryChildren’s Hospital Boston and Harvard Medical SchoolBostonUSA

Personalised recommendations