, Volume 13, Issue 2, pp 75–85 | Cite as

Visualizing vascular permeability and lymphatic drainage using labeled serum albumin

Original Paper


During the early stages of angiogenesis, following stimulation of endothelial cells by vascular endothelial growth factor (VEGF), the vascular wall is breached, allowing high molecular weight proteins to leak from the vessels to the interstitial space. This hallmark of angiogenesis results in deposition of a provisional matrix, elevation of the interstitial pressure and induction of interstitial convection. Albumin, the major plasma protein appears to be an innocent bystander that is significantly affected by these changes, and thus can be used as a biomarker for vascular permeability associated with angiogenesis. Traditionally, albumin leak in superficial organs was followed by colorimetry or morphometry with the use of albumin binding vital dyes. Over the last years, the introduction of tagged-albumin that can be detected by various imaging methods, such as magnetic resonance imaging and positron emission tomography, opened new possibilities for quantitative three dimension dynamic analysis of permeability in any organ. Using these tools it is now possible to follow not only vascular permeability, but also interstitial convection and lymphatic drain. Active uptake of tagged albumin by caveolae-mediated endocytosis opens the possibility for using labeled albumin for vital staining of cells and cell tracking. This approach was used for monitoring recruitment of perivascular stroma fibroblasts associated with tumor angiogenesis.


Vascular permeability Interstitial convection Lymphatic drain Albumin VEGF Imaging Cell tracking 


  1. 1.
    Leung DW, Cachianes G, Kuang WJ et al (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309CrossRefPubMedGoogle Scholar
  2. 2.
    Dvorak HF (2006) Discovery of vascular permeability factor (VPF). Exp Cell Res 312:522–526CrossRefPubMedGoogle Scholar
  3. 3.
    Dvorak HF, Nagy JA, Feng D et al (1999) Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol 237:97–132PubMedGoogle Scholar
  4. 4.
    Dvorak AM, Feng D (2001) The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle. J Histochem Cytochem 49:419–432PubMedGoogle Scholar
  5. 5.
    Nagy JA, Benjamin L, Zeng H et al (2008) Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis 11:109–119CrossRefPubMedGoogle Scholar
  6. 6.
    Miles AA, Miles EM (1952) Vascular reactions to histamine, histamine-liberator and leukotaxine in the skin of guinea-pigs. J Physiol 118:228–257PubMedGoogle Scholar
  7. 7.
    Kratz F (2008) Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 132:171–183CrossRefPubMedGoogle Scholar
  8. 8.
    Hsia JC, Wong LT, Tan CT et al (1984) Bovine serum albumin: characterization of a fatty acid binding site on the N-terminal peptic fragment using a new spin-label. Biochemistry 23:5930–5932CrossRefPubMedGoogle Scholar
  9. 9.
    Doweiko JP, Nompleggi DJ (1991) Role of albumin in human physiology and pathophysiology. JPEN J Parenter Enteral Nutr 15:207–211CrossRefPubMedGoogle Scholar
  10. 10.
    Schmiedl U, Ogan MD, Moseley ME et al (1986) Comparison of the contrast-enhancing properties of albumin-(Gd-DTPA) and Gd-DTPA at 2.0 T: and experimental study in rats. AJR Am J Roentgenol 147:1263–1270PubMedGoogle Scholar
  11. 11.
    Pham CD, Roberts TP, van Bruggen N et al (1998) Magnetic resonance imaging detects suppression of tumor vascular permeability after administration of antibody to vascular endothelial growth factor. Cancer Invest 16:225–230CrossRefPubMedGoogle Scholar
  12. 12.
    Daldrup H, Shames DM, Wendland M et al (1998) Correlation of dynamic contrast-enhanced magnetic resonance imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media. Pediatr Radiol 28:67–78CrossRefPubMedGoogle Scholar
  13. 13.
    Ogan MD, Schmiedl U, Moseley ME et al (1987) Albumin labeled with Gd-DTPA. An intravascular contrast-enhancing agent for magnetic resonance blood pool imaging: preparation and characterization. Invest Radiol 22:665–671CrossRefPubMedGoogle Scholar
  14. 14.
    Yuan F, Dellian M, Fukumura D et al (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55:3752–3756PubMedGoogle Scholar
  15. 15.
    Neeman M, Provenzale JM, Dewhirst MW (2001) Magnetic resonance imaging applications in the evaluation of tumor angiogenesis. Semin Radiat Oncol 11:70–82CrossRefPubMedGoogle Scholar
  16. 16.
    Dafni H, Gilead A, Nevo N et al (2003) Modulation of the pharmacokinetics of macromolecular contrast material by avidin chase: MRI, optical, and inductively coupled plasma mass spectrometry tracking of triply labeled albumin. Magn Reson Med 50:904–914CrossRefPubMedGoogle Scholar
  17. 17.
    Schmiedl U, Brasch RC, Ogan MD et al (1990) Albumin labeled with Gd-DTPA. An intravascular contrast-enhancing agent for magnetic resonance blood pool and perfusion imaging. Acta Radiol Suppl 374:99–102PubMedGoogle Scholar
  18. 18.
    van Dijke CF, Mann JS, Rosenau W et al (2002) Comparison of MR contrast-enhancing properties of albumin-(biotin)10-(gadopentetate)25, a macromolecular MR blood pool contrast agent, and its microscopic distribution. Acad Radiol 9(Suppl 1):S257–S260CrossRefPubMedGoogle Scholar
  19. 19.
    Migalovich HS, Kalchenko V, Nevo N et al (2009) Harnessing competing endocytic pathways for overcoming the tumor-blood barrier: magnetic resonance imaging and near-infrared imaging of bifunctional contrast media. Cancer Res 69:5610–5617CrossRefPubMedGoogle Scholar
  20. 20.
    Lauffer RB, Parmelee DJ, Dunham SU et al (1998) MS-325: albumin-targeted contrast agent for MR angiography. Radiology 207:529–538PubMedGoogle Scholar
  21. 21.
    Caravan P, Cloutier NJ, Greenfield MT et al (2002) The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. J Am Chem Soc 124:3152–3162CrossRefPubMedGoogle Scholar
  22. 22.
    Shamsi K, Yucel EK, Chamberlin P (2006) A summary of safety of gadofosveset (MS-325) at 0.03 mmol/kg body weight dose: Phase II and Phase III clinical trials data. Invest Radiol 41:822–830CrossRefPubMedGoogle Scholar
  23. 23.
    Brasch RC (1992) New directions in the development of MR imaging contrast media. Radiology 183:1–11PubMedGoogle Scholar
  24. 24.
    Brasch RC, Li KC, Husband JE et al (2000) In vivo monitoring of tumor angiogenesis with MR imaging. Acad Radiol 7:812–823CrossRefPubMedGoogle Scholar
  25. 25.
    Bhujwalla ZM, Artemov D, Glockner J (1999) Tumor angiogenesis, vascularization, and contrast-enhanced magnetic resonance imaging. Top Magn Reson Imaging 10:92–103CrossRefPubMedGoogle Scholar
  26. 26.
    Dafni H, Landsman L, Schechter B et al (2002) MRI and fluorescence microscopy of the acute vascular response to VEGF165: vasodilation, hyper-permeability and lymphatic uptake, followed by rapid inactivation of the growth factor. NMR Biomed 15:120–131CrossRefPubMedGoogle Scholar
  27. 27.
    Brey EM, King TW, Johnston C et al (2002) A technique for quantitative three-dimensional analysis of microvascular structure. Microvasc Res 63:279–294CrossRefPubMedGoogle Scholar
  28. 28.
    Samoszuk M, Leonor L, Espinoza F et al (2002) Measuring microvascular density in tumors by digital dissection. Anal Quant Cytol Histol 24:15–22PubMedGoogle Scholar
  29. 29.
    Saeed M, van Dijke CF, Mann JS et al (1998) Histologic confirmation of microvascular hyperpermeability to macromolecular MR contrast medium in reperfused myocardial infarction. J Magn Reson Imaging 8:561–567CrossRefPubMedGoogle Scholar
  30. 30.
    Dafni H, Israely T, Bhujwalla ZM et al (2002) Overexpression of vascular endothelial growth factor 165 drives peritumor interstitial convection and induces lymphatic drain: magnetic resonance imaging, confocal microscopy, and histological tracking of triple-labeled albumin. Cancer Res 62:6731–6739PubMedGoogle Scholar
  31. 31.
    Folkman J (1992) The role of angiogenesis in tumor growth. Semin Cancer Biol 3:65–71PubMedGoogle Scholar
  32. 32.
    Ravi R, Mookerjee B, Bhujwalla ZM et al (2000) Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 14:34–44PubMedGoogle Scholar
  33. 33.
    Sennino B, Raatschen HJ, Wendland MF et al (2009) Correlative dynamic contrast MRI and microscopic assessments of tumor vascularity in RIP-Tag2 transgenic mice. Magn Reson Med 62:616–625CrossRefPubMedGoogle Scholar
  34. 34.
    Ali MM, Janic B, Babajani-Feremi A et al (2010) Changes in vascular permeability and expression of different angiogenic factors following anti-angiogenic treatment in rat glioma. PLoS One 5:e8727CrossRefPubMedGoogle Scholar
  35. 35.
    Raatschen HJ, Simon GH, Fu Y et al (2008) Vascular permeability during antiangiogenesis treatment: MR imaging assay results as biomarker for subsequent tumor growth in rats. Radiology 247:391–399CrossRefPubMedGoogle Scholar
  36. 36.
    Dafni H, Kim SJ, Bankson JA et al (2008) Macromolecular dynamic contrast-enhanced (DCE)-MRI detects reduced vascular permeability in a prostate cancer bone metastasis model following anti-platelet-derived growth factor receptor (PDGFR) therapy, indicating a drop in vascular endothelial growth factor receptor (VEGFR) activation. Magn Reson Med 60:822–833CrossRefPubMedGoogle Scholar
  37. 37.
    Vogel-Claussen J, Gimi B, Artemov D et al (2007) Diffusion-weighted and macromolecular contrast enhanced MRI of tumor response to antivascular therapy with ZD6126. Cancer Biol Ther 6:1469–1475CrossRefPubMedGoogle Scholar
  38. 38.
    Bhujwalla ZM, Artemov D, Natarajan K et al (2003) Reduction of vascular and permeable regions in solid tumors detected by macromolecular contrast magnetic resonance imaging after treatment with antiangiogenic agent TNP-470. Clin Cancer Res 9:355–362PubMedGoogle Scholar
  39. 39.
    Gilad AA, Israely T, Dafni H et al (2005) Functional and molecular mapping of uncoupling between vascular permeability and loss of vascular maturation in ovarian carcinoma xenografts: the role of stroma cells in tumor angiogenesis. Int J Cancer 117:202–211CrossRefPubMedGoogle Scholar
  40. 40.
    Bhujwalla ZM, Artemov D, Ballesteros P et al (2002) Combined vascular and extracellular pH imaging of solid tumors. NMR Biomed 15:114–119CrossRefPubMedGoogle Scholar
  41. 41.
    Penet MF, Pathak AP, Raman V et al (2009) Noninvasive multiparametric imaging of metastasis-permissive microenvironments in a human prostate cancer xenograft. Cancer Res 69:8822–8829CrossRefPubMedGoogle Scholar
  42. 42.
    Daldrup-Link HE, Brasch RC (2003) Macromolecular contrast agents for MR mammography: current status. Eur Radiol 13:354–365PubMedGoogle Scholar
  43. 43.
    Cyran CC, Fu Y, Raatschen HJ et al (2008) New macromolecular polymeric MRI contrast agents for application in the differentiation of cancer from benign soft tissues. J Magn Reson Imaging 27:581–589CrossRefPubMedGoogle Scholar
  44. 44.
    Preda A, Novikov V, Moglich M et al (2004) MRI monitoring of Avastin antiangiogenesis therapy using B22956/1, a new blood pool contrast agent, in an experimental model of human cancer. J Magn Reson Imaging 20:865–873CrossRefPubMedGoogle Scholar
  45. 45.
    Feng Y, Jeong EK, Mohs AM et al (2008) Characterization of tumor angiogenesis with dynamic contrast-enhanced MRI and biodegradable macromolecular contrast agents in mice. Magn Reson Med 60:1347–1352CrossRefPubMedGoogle Scholar
  46. 46.
    Senger DR, Brown LF, Claffey KP et al (1994) Vascular permeability factor, tumor angiogenesis and stroma generation. Invasion Metastasis 14:385–394PubMedGoogle Scholar
  47. 47.
    Senger DR, Van de Water L, Brown LF et al (1993) Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev 12:303–324CrossRefPubMedGoogle Scholar
  48. 48.
    Ferrara N (2001) Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol 280:C1358–C1366PubMedGoogle Scholar
  49. 49.
    Plaks V, Kalchenko V, Dekel N et al (2006) MRI analysis of angiogenesis during mouse embryo implantation. Magn Reson Med 55:1013–1022CrossRefPubMedGoogle Scholar
  50. 50.
    Plaks V, Birnberg T, Berkutzki T et al (2008) Uterine DCs are crucial for decidua formation during embryo implantation in mice. J Clin Invest 118:3954–3965PubMedGoogle Scholar
  51. 51.
    Vandoorne K, Magland J, Plaks V et al. (2010) Bone vascularization and trabecular bone formation are mediated by PKBalpha/Akt1 in a gene dosage dependent manner: In vivo and ex vivo MRI. Magn Reson Med (in press)Google Scholar
  52. 52.
    Ziv K, Nevo N, Dafni H et al (2004) Longitudinal MRI tracking of the angiogenic response to hind limb ischemic injury in the mouse. Magn Reson Med 51:304–311CrossRefPubMedGoogle Scholar
  53. 53.
    Pathak AP, Artemov D, Ward BD et al (2005) Characterizing extravascular fluid transport of macromolecules in the tumor interstitium by magnetic resonance imaging. Cancer Res 65:1425–1432CrossRefPubMedGoogle Scholar
  54. 54.
    Saban MR, Towner R, Smith N et al. (2007) Lymphatic vessel density and function in experimental bladder cancer. 7:219Google Scholar
  55. 55.
    Dafni H, Cohen B, Ziv K et al (2005) The role of heparanase in lymph node metastatic dissemination: dynamic contrast-enhanced MRI of Eb lymphoma in mice. Neoplasia 7:224–233CrossRefPubMedGoogle Scholar
  56. 56.
    Israely T, Dafni H, Granot D et al (2003) Vascular remodeling and angiogenesis in ectopic ovarian transplants: a crucial role of pericytes and vascular smooth muscle cells in maintenance of ovarian grafts. Biol Reprod 68:2055–2064CrossRefPubMedGoogle Scholar
  57. 57.
    Israely T, Dafni H, Nevo N et al (2004) Angiogenesis in ectopic ovarian xenotransplantation: multiparameter characterization of the neovasculature by dynamic contrast-enhanced MRI. Magn Reson Med 52:741–750CrossRefPubMedGoogle Scholar
  58. 58.
    Ebert SN, Taylor DG, Nguyen HL et al (2007) Noninvasive tracking of cardiac embryonic stem cells in vivo using magnetic resonance imaging techniques. Stem Cells 25:2936–2944CrossRefPubMedGoogle Scholar
  59. 59.
    Zhou B, Shan H, Li D et al. (2010) MR tracking of magnetically labeled mesenchymal stem cells in rats with liver fibrosis. Magn Reson ImagingGoogle Scholar
  60. 60.
    Madisen L, Zwingman TA, Sunkin SM et al (2010) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci 13:133–140CrossRefPubMedGoogle Scholar
  61. 61.
    Granot D, Addadi Y, Kalchenko V et al (2007) In vivo imaging of the systemic recruitment of fibroblasts to the angiogenic rim of ovarian carcinoma tumors. Cancer Res 67:9180–9189CrossRefPubMedGoogle Scholar
  62. 62.
    Granot D, Kunz-Schughart LA, Neeman M (2005) Labeling fibroblasts with biotin-BSA-GdDTPA-FAM for tracking of tumor-associated stroma by fluorescence and MR imaging. Magn Reson Med 54:789–797CrossRefPubMedGoogle Scholar
  63. 63.
    Long CM, Bulte JW (2009) In vivo tracking of cellular therapeutics using magnetic resonance imaging. Expert Opin Biol Ther 9:293–306CrossRefPubMedGoogle Scholar
  64. 64.
    Frank JA, Miller BR, Arbab AS et al (2003) Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228:480–487CrossRefPubMedGoogle Scholar
  65. 65.
    Baligand C, Vauchez K, Fiszman M et al (2009) Discrepancies between the fate of myoblast xenograft in mouse leg muscle and NMR label persistency after loading with Gd-DTPA or SPIOs. Gene Ther 16:734–745CrossRefPubMedGoogle Scholar
  66. 66.
    Liu W, Frank JA (2009) Detection and quantification of magnetically labeled cells by cellular MRI. Eur J Radiol 70:258–264CrossRefPubMedGoogle Scholar
  67. 67.
    Wang Z, Tiruppathi C, Minshall RD et al (2009) Size and dynamics of caveolae studied using nanoparticles in living endothelial cells. ACS Nano 3:4110–4116CrossRefPubMedGoogle Scholar
  68. 68.
    Vogel SM, Minshall RD, Pilipovic M et al (2001) Albumin uptake and transcytosis in endothelial cells in vivo induced by albumin-binding protein. Am J Physiol Lung Cell Mol Physiol 281:L1512–L1522PubMedGoogle Scholar
  69. 69.
    Phung TL, Ziv K, Dabydeen D et al (2006) Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell 10:159–170CrossRefPubMedGoogle Scholar
  70. 70.
    Gilead A, Meir G, Neeman M (2004) The role of angiogenesis, vascular maturation, regression and stroma infiltration in dormancy and growth of implanted MLS ovarian carcinoma spheroids. Int J Cancer 108:524–531CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Katrien Vandoorne
    • 1
  • Yoseph Addadi
    • 1
  • Michal Neeman
    • 1
  1. 1.Department of Biological RegulationWeizmann InstituteRehovotIsrael

Personalised recommendations