, Volume 12, Issue 2, pp 197–207 | Cite as

Vasculogenesis in infantile hemangioma

  • Elisa Boscolo
  • Joyce BischoffEmail author
Original Paper


Infantile hemangioma is a vascular tumor that occurs in 5–10% of infants of European descent. A defining feature of infantile hemangioma is the dramatic growth and development into a disorganized mass of blood vessels. Subsequently, a slow spontaneous involution begins around 1 year of age and continues for 4–6 years. The growth and involution of infantile hemangioma is very different from other vascular tumors and vascular malformations, which do not regress and can occur at any time during childhood or adult life. Much has been learned from careful study of the tissue morphology and gene expression patterns during the life-cycle of hemangioma. Tissue explants and tumor-derived cell populations have provided further insight to unravel the cellular and molecular basis of infantile hemangioma. A multipotent progenitor cell capable of de novo blood vessel formation has been isolated from infantile hemangioma, which suggests that this common tumor of infancy, long considered to be a model for pathologic angiogenesis, may also represent pathologic vasculogenesis. Whether viewed as angiogenesis or vasculogenesis, infantile hemangioma represents a vascular perturbation during a critical period of post-natal growth, and as such provides a unique opportunity to decipher mechanisms of human vascular development.


Angiogenesis Endothelial cells Endothelial progenitor cells Hemangioma Vasculogenesis VEGF-receptors 



We thank Dr. Arnaud Picard, Hôpital d’enfants Armand-Trousseau, Service de Chirurgie Maxillo-faciale et Plastique, Paris, France, for providing the images of the CD133 and NG2 immunostaining in Fig. 2. We also thank Ms. Kristin Johnson for her help with preparing the figures. Writing of this article was supported by a grant from the National Institutes of Health (P01 AR48564).


  1. 1.
    Mulliken JB, Fishman SJ, Burrows PE (2000) Vascular anomalies. Curr Probl Surg 37:517–584PubMedCrossRefGoogle Scholar
  2. 2.
    Drolet BA, Esterly NB, Frieden IJ (1999) Hemangiomas in children. N Engl J Med 341:173–181PubMedCrossRefGoogle Scholar
  3. 3.
    Haggstrom AN, Drolet BA, Baselga E, Chamlin SL, Garzon MC, Horii KA, Lucky AW, Mancini AJ, Metry DW, Newell B et al (2007) Prospective study of infantile hemangiomas: demographic, prenatal, and perinatal characteristics. J Pediatr 150:291–294PubMedCrossRefGoogle Scholar
  4. 4.
    Frieden IJ, Haggstrom AN, Drolet BA, Mancini AJ, Friedlander SF, Boon L, Chamlin SL, Baselga E, Garzon MC, Nopper AJ et al (2005) Infantile hemangiomas: current knowledge, future directions. In: Proceedings of a research workshop on infantile hemangiomas, April 7–9, 2005, Bethesda. Pediatr Dermatol 22:383–406Google Scholar
  5. 5.
    Metry DW, Haggstrom AN, Drolet BA, Baselga E, Chamlin S, Garzon M, Horii K, Lucky A, Mancini AJ, Newell B et al (2006) A prospective study of PHACE syndrome in infantile hemangiomas: demographic features, clinical findings, and complications. Am J Med Genet A 140:975–986PubMedGoogle Scholar
  6. 6.
    Huang SA, Tu HM, Harney JW, Venihaki M, Butte AJ, Kozakewich HP, Fishman SJ, Larsen PR (2000) Severe hypothyroidism caused by type 3 iodothyronine deiodinase in infantile hemangiomas. N Engl J Med 343:185–189PubMedCrossRefGoogle Scholar
  7. 7.
    Boon LM, MacDonald DM, Mulliken JB (1999) Complications of systemic corticosteroid therapy for problematic hemangioma. Plast Reconstr Surg 104:1616–1623PubMedCrossRefGoogle Scholar
  8. 8.
    Enjolras O, Breviere GM, Roger G, Tovi M, Pellegrino B, Varotti E, Soupre V, Picard A, Leverger G (2004) Vincristine treatment for function- and life-threatening infantile hemangioma. Arch Pediatr 11:99–107PubMedCrossRefGoogle Scholar
  9. 9.
    Fawcett SL, Grant I, Hall PN, Kelsall AW, Nicholson JC (2004) Vincristine as a treatment for a large haemangioma threatening vital functions. Br J Plast Surg 57:168–171PubMedCrossRefGoogle Scholar
  10. 10.
    Ezekowitz RA, Mulliken JB, Folkman J (1992) Interferon alfa-2a therapy for life-threatening hemangiomas of infancy. N Engl J Med 326:1456–1463PubMedGoogle Scholar
  11. 11.
    Chang E, Boyd A, Nelson CC, Crowley D, Law T, Keough KM, Folkman J, Ezekowitz RA, Castle VP (1997) Successful treatment of infantile hemangiomas with interferon-alpha-2b. J Pediatr Hematol Oncol 19:237–244PubMedCrossRefGoogle Scholar
  12. 12.
    Barlow CF, Priebe CJ, Mulliken JB, Barnes PD, Mac Donald D, Folkman J, Ezekowitz RA (1998) Spastic diplegia as a complication of interferon Alfa-2a treatment of hemangiomas of infancy. J Pediatr 132:527–530PubMedCrossRefGoogle Scholar
  13. 13.
    Greinwald JH Jr, Burke DK, Bonthius DJ, Bauman NM, Smith RJ (1999) An update on the treatment of hemangiomas in children with interferon alfa-2a. Arch Otolaryngol Head Neck Surg 125:21–27PubMedGoogle Scholar
  14. 14.
    Leaute-Labreze C, Dumas de la Roque E, Hubiche T, Boralevi F, Thambo JB, Taieb A (2008) Propranolol for severe hemangiomas of infancy. N Engl J Med 358:2649–2651PubMedCrossRefGoogle Scholar
  15. 15.
    Chang LC, Haggstrom AN, Drolet BA, Baselga E, Chamlin SL, Garzon MC, Horii KA, Lucky AW, Mancini AJ, Metry DW et al (2008) Growth characteristics of infantile hemangiomas: implications for management. Pediatrics 122:360–367PubMedCrossRefGoogle Scholar
  16. 16.
    Mancini AJ, Smoller BR (1996) Proliferation and apoptosis within juvenile capillary hemangiomas. Am J Dermatopathol 18:505–514PubMedCrossRefGoogle Scholar
  17. 17.
    Smoller BR, Apfelberg DB (1993) Infantile (juvenile) capillary hemangioma: a tumor of heterogeneous cellular elements. J Cutan Pathol 20:330–336PubMedCrossRefGoogle Scholar
  18. 18.
    Takahashi K, Mulliken JB, Kozakewich HP, Rogers RA, Folkman J, Ezekowitz RA (1994) Cellular markers that distinguish the phases of hemangioma during infancy and childhood. J Clin Invest 93:2357–2364PubMedCrossRefGoogle Scholar
  19. 19.
    Chang J, Most D, Bresnick S, Mehrara B, Steinbrech DS, Reinisch J, Longaker MT, Turk AE (1999) Proliferative hemangiomas: analysis of cytokine gene expression and angiogenesis. Plast Reconstr Surg 103:1–9 (discussion 10)PubMedCrossRefGoogle Scholar
  20. 20.
    Picard A, Boscolo E, Khan ZA, Bartch TC, Mulliken JB, Vazquez MP, Bischoff J (2008) IGF-2 and FLT-1/VEGF-R1 mRNA levels reveal distinctions and similarities between congenital and common infantile hemangioma. Pediatr Res 63:263–267PubMedCrossRefGoogle Scholar
  21. 21.
    Yu Y, Varughese J, Brown LF, Mulliken JB, Bischoff J (2001) Increased Tie2 expression, enhanced response to angiopoietin-1, and dysregulated angiopoietin-2 expression in hemangioma-derived endothelial cells. Am J Pathol 159:2271–2280PubMedGoogle Scholar
  22. 22.
    Yu Y, Flint AF, Mulliken JB, Wu JK, Bischoff J (2004) Endothelial progenitor cells in infantile hemangioma. Blood 103:1373–1375PubMedCrossRefGoogle Scholar
  23. 23.
    North PE, Waner M, Mizeracki A, Mrak RE, Nicholas R, Kincannon J, Suen JY, Mihm MC Jr (2001) A unique microvascular phenotype shared by juvenile hemangiomas and human placenta. Arch Dermatol 137:559–570PubMedGoogle Scholar
  24. 24.
    Barnes CM, Huang S, Kaipainen A, Sanoudou D, Chen EJ, Eichler GS, Guo Y, Yu Y, Ingber DE, Mulliken JB et al (2005) Evidence by molecular profiling for a placental origin of infantile hemangioma. Proc Natl Acad Sci USA 102:19097–19102PubMedCrossRefGoogle Scholar
  25. 25.
    Barnes CM, Christison-Lagay EA, Folkman J (2007) The placenta theory and the origin of infantile hemangioma. Lymphat Res Biol 5:245–255PubMedCrossRefGoogle Scholar
  26. 26.
    Chang EI, Chang EI, Thangarajah H, Hamou C, Gurtner GC (2007) Hypoxia, hormones, and endothelial progenitor cells in hemangioma. Lymphat Res Biol 5:237–243PubMedCrossRefGoogle Scholar
  27. 27.
    Pittman KM, Losken HW, Kleinman ME, Marcus JR, Blei F, Gurtner GC, Marchuk DA (2006) No evidence for maternal-fetal microchimerism in infantile hemangioma: a molecular genetic investigation. J Invest Dermatol 126:2533–2538PubMedCrossRefGoogle Scholar
  28. 28.
    Regnier S, Dupin N, Le Danff C, Wassef M, Enjolras O, Aractingi S (2007) Endothelial cells in infantile haemangiomas originate from the child and not from the mother (a fluorescence in situ hybridization-based study). Br J Dermatol 157:158–160PubMedCrossRefGoogle Scholar
  29. 29.
    Bauland CG, van Steensel MA, Steijlen PM, Rieu PN, Spauwen PH (2006) The pathogenesis of hemangiomas: a review. Plast Reconstr Surg 117:29e–35ePubMedCrossRefGoogle Scholar
  30. 30.
    Pack GT, Miller TR (1950) Hemangiomas; classification, diagnosis and treatment. Angiology 1:405–426PubMedCrossRefGoogle Scholar
  31. 31.
    Virchow R (1863) Die Krankhaften Geschwulste. August Hirschwald, BerlinGoogle Scholar
  32. 32.
    Pack G (1950) Hemangiomas, classification, diagnosis, and treatment. Angiology 1:40CrossRefGoogle Scholar
  33. 33.
    Malan E (1974) Vascular Malformations (Angiodysplasias). Carlo Erba Foundation, Milan, p 4Google Scholar
  34. 34.
    Mulliken JB, Zetter BR, Folkman J (1982) In vitro characteristics of endothelium from hemangiomas and vascular malformations. Surgery 92:348–353PubMedGoogle Scholar
  35. 35.
    Dosanjh A, Chang J, Bresnick S, Zhou L, Reinisch J, Longaker M, Karasek M (2000) In vitro characteristics of neonatal hemangioma endothelial cells: similarities and differences between normal neonatal and fetal endothelial cells. J Cutan Pathol 27:441–450PubMedCrossRefGoogle Scholar
  36. 36.
    Boye E, Yu Y, Paranya G, Mulliken JB, Olsen BR, Bischoff J (2001) Clonality and altered behavior of endothelial cells from hemangiomas. J Clin Invest 107:745–752PubMedCrossRefGoogle Scholar
  37. 37.
    Dadras SS, North PE, Bertoncini J, Mihm MC, Detmar M (2004) Infantile hemangiomas are arrested in an early developmental vascular differentiation state. Mod Pathol 17:1068–1079PubMedCrossRefGoogle Scholar
  38. 38.
    Walter JW, North PE, Waner M, Mizeracki A, Blei F, Walker JW, Reinisch JF, Marchuk DA (2002) Somatic mutation of vascular endothelial growth factor receptors in juvenile hemangioma. Genes Chromosomes Cancer 33:295–303PubMedCrossRefGoogle Scholar
  39. 39.
    Khan ZA, Melero-Martin JM, Wu X, Paruchuri S, Boscolo E, Mulliken JB, Bischoff J (2006) Endothelial progenitor cells from infantile hemangioma and umbilical cord blood display unique cellular responses to endostatin. Blood 108:915–921PubMedCrossRefGoogle Scholar
  40. 40.
    O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285PubMedCrossRefGoogle Scholar
  41. 41.
    Kleinman ME, Tepper OM, Capla JM, Bhatt KA, Ceradini DJ, Galiano RD, Blei F, Levine JP, Gurtner GC (2003) Increased circulating AC133+ CD34+ endothelial progenitor cells in children with hemangioma. Lymphat Res Biol 1:301–307PubMedCrossRefGoogle Scholar
  42. 42.
    Ozerdem U, Grako KA, Dahlin-Huppe K, Monosov E, Stallcup WB (2001) NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222:218–227PubMedCrossRefGoogle Scholar
  43. 43.
    Tigges U, Hyer EG, Scharf J, Stallcup WB (2008) FGF2-dependent neovascularization of subcutaneous Matrigel plugs is initiated by bone marrow-derived pericytes and macrophages. Development 135:523–532PubMedCrossRefGoogle Scholar
  44. 44.
    Li Q, Yu Y, Bischoff J, Mulliken JB, Olsen BR (2003) Differential expression of CD146 in tissues and endothelial cells derived from infantile haemangioma and normal human skin. J Pathol 201:296–302PubMedCrossRefGoogle Scholar
  45. 45.
    Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313PubMedCrossRefGoogle Scholar
  46. 46.
    Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, Tallquist MD, Graff JM (2008) White fat progenitor cells reside in the adipose vasculature. Science 322:583–586PubMedCrossRefGoogle Scholar
  47. 47.
    Khan ZA, Boscolo E, Picard A, Psutka S, Melero-Martin JM, Bartch TC, Mulliken JB, Bischoff J (2008) Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. J Clin Invest 118:2592–2599PubMedGoogle Scholar
  48. 48.
    Ritter MR, Dorrell MI, Edmonds J, Friedlander SF, Friedlander M (2002) Insulin-like growth factor 2 and potential regulators of hemangioma growth and involution identified by large-scale expression analysis. Proc Natl Acad Sci USA 99:7455–7460PubMedCrossRefGoogle Scholar
  49. 49.
    North PE, Waner M, Mizeracki A, Mihm MC Jr (2000) GLUT1: a newly discovered immunohistochemical marker for juvenile hemangiomas. Hum Pathol 31:11–22PubMedCrossRefGoogle Scholar
  50. 50.
    Melero-Martin JM, De Obaldia ME, Kang SY, Khan ZA, Yuan L, Oettgen P, Bischoff J (2008) Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res 103:194–202PubMedCrossRefGoogle Scholar
  51. 51.
    Loffredo F, Lee RT (2008) Therapeutic vasculogenesis: it takes two. Circ Res 103:128–130PubMedCrossRefGoogle Scholar
  52. 52.
    Au P, Tam J, Fukumura D, Jain RK (2008) Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 111:4551–4558PubMedCrossRefGoogle Scholar
  53. 53.
    Tan ST, Wallis RA, He Y, Davis PF (2004) Mast cells and hemangioma. Plast Reconstr Surg 113:999–1011PubMedCrossRefGoogle Scholar
  54. 54.
    Pasyk KA, Cherry GW, Grabb WC, Sasaki GH (1984) Quantitative evaluation of mast cells in cellularly dynamic and adynamic vascular malformations. Plast Reconstr Surg 73:69–77PubMedCrossRefGoogle Scholar
  55. 55.
    Ritter MR, Reinisch J, Friedlander SF, Friedlander M (2006) Myeloid cells in infantile hemangioma. Am J Pathol 168:621–628PubMedCrossRefGoogle Scholar
  56. 56.
    Nguyen VA, Furhapter C, Romani N, Weber F, Sepp N (2004) Infantile hemangioma is a proliferation of beta 4-negative endothelial cells adjacent to HLA-DR-positive cells with dendritic cell morphology. Hum Pathol 35:739–744PubMedCrossRefGoogle Scholar
  57. 57.
    Jang YC, Isik FF, Gibran NS (2000) Nerve distribution in hemangiomas depends on the proliferative state of the microvasculature. J Surg Res 93:144–148PubMedCrossRefGoogle Scholar
  58. 58.
    Berard M, Sordello S, Ortega N, Carrier JL, Peyri N, Wassef M, Bertrand N, Enjolras O, Drouet L, Plouet J (1997) Vascular endothelial growth factor confers a growth advantage in vitro and in vivo to stromal cells cultured from neonatal hemangiomas. Am J Pathol 150:1315–1326PubMedGoogle Scholar
  59. 59.
    Jinnin M, Medici D, Park L, Limaye N, Liu Y, Boscolo E, Bischoff J, Vikkula M, Boye E, Olsen BR (2008) Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nat Med 14:1236–1246PubMedCrossRefGoogle Scholar
  60. 60.
    Zhang L, Lin X, Wang W, Zhuang X, Dong J, Qi Z, Hu Q (2005) Circulating level of vascular endothelial growth factor in differentiating hemangioma from vascular malformation patients. Plast Reconstr Surg 116:200–204PubMedCrossRefGoogle Scholar
  61. 61.
    Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70PubMedCrossRefGoogle Scholar
  62. 62.
    Blei F, Walter J, Orlow SJ, Marchuk DA (1998) Familial segregation of hemangiomas and vascular malformations as an autosomal dominant trait. Arch Dermatol 134:718–722PubMedCrossRefGoogle Scholar
  63. 63.
    Walter JW, Blei F, Anderson JL, Orlow SJ, Speer MC, Marchuk DA (1999) Genetic mapping of a novel familial form of infantile hemangioma. Am J Med Genet 82:77–83PubMedCrossRefGoogle Scholar
  64. 64.
    Pramanik K, Chun CZ, Garnaas MK, Samant GV, Li K, Horswill MA, North PE, Ramchandran R (2009) Dusp-5 and Snrk-1 coordinately function during vascular development and disease. Blood 113:1184–1191PubMedCrossRefGoogle Scholar
  65. 65.
    Qian F, Zhen F, Ong C, Jin SW, Meng Soo H, Stainier DY, Lin S, Peng J, Wen Z (2005) Microarray analysis of zebrafish cloche mutant using amplified cDNA and identification of potential downstream target genes. Dev Dyn 233:1163–1172PubMedCrossRefGoogle Scholar
  66. 66.
    Sumanas S, Jorniak T, Lin S (2005) Identification of novel vascular endothelial-specific genes by the microarray analysis of the zebrafish cloche mutants. Blood 106:534–541PubMedCrossRefGoogle Scholar
  67. 67.
    St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B et al (2000) Genes expressed in human tumor endothelium. Science 289:1197–1202PubMedCrossRefGoogle Scholar
  68. 68.
    Arbiser JL, Weiss SW, Arbiser ZK, Bravo F, Govindajaran B, Caceres-Rios H, Cotsonis G, Recavarren S, Swerlick RA, Cohen C (2001) Differential expression of active mitogen-activated protein kinase in cutaneous endothelial neoplasms: implications for biologic behavior and response to therapy. J Am Acad Dermatol 44:193–197PubMedCrossRefGoogle Scholar
  69. 69.
    Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180PubMedCrossRefGoogle Scholar
  70. 70.
    Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60PubMedCrossRefGoogle Scholar
  71. 71.
    Hawighorst T, Skobe M, Streit M, Hong YK, Velasco P, Brown LF, Riccardi L, Lange-Asschenfeldt B, Detmar M (2002) Activation of the tie2 receptor by angiopoietin-1 enhances tumor vessel maturation and impairs squamous cell carcinoma growth. Am J Pathol 160:1381–1392PubMedGoogle Scholar
  72. 72.
    Stoeltzing O, Ahmad SA, Liu W, McCarty MF, Parikh AA, Fan F, Reinmuth N, Bucana CD, Ellis LM (2002) Angiopoietin-1 inhibits tumour growth and ascites formation in a murine model of peritoneal carcinomatosis. Br J Cancer 87:1182–1187PubMedCrossRefGoogle Scholar
  73. 73.
    Feng Y, vom Hagen F, Pfister F, Djokic S, Hoffmann S, Back W, Wagner P, Lin J, Deutsch U, Hammes HP (2007) Impaired pericyte recruitment and abnormal retinal angiogenesis as a result of angiopoietin-2 overexpression. Thromb Haemost 97:99–108PubMedGoogle Scholar
  74. 74.
    Perry BN, Govindarajan B, Bhandarkar SS, Knaus UG, Valo M, Sturk C, Carrillo CO, Sohn A, Cerimele F, Dumont D et al (2006) Pharmacologic blockade of angiopoietin-2 is efficacious against model hemangiomas in mice. J Invest Dermatol 126:2316–2322PubMedCrossRefGoogle Scholar
  75. 75.
    Sun JF, Phung T, Shiojima I, Felske T, Upalakalin JN, Feng D, Kornaga T, Dor T, Dvorak AM, Walsh K et al (2005) Microvascular patterning is controlled by fine-tuning the Akt signal. Proc Natl Acad Sci USA 102:128–133PubMedCrossRefGoogle Scholar
  76. 76.
    Phung TL, Ziv K, Dabydeen D, Eyiah-Mensah G, Riveros M, Perruzzi C, Sun J, Monahan-Earley RA, Shiojima I, Nagy JA et al (2006) Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell 10:159–170PubMedCrossRefGoogle Scholar
  77. 77.
    Kleinman ME, Greives MR, Churgin SS, Blechman KM, Chang EI, Ceradini DJ, Tepper OM, Gurtner GC (2007) Hypoxia-induced mediators of stem/progenitor cell trafficking are increased in children with hemangioma. Arterioscler Thromb Vasc Biol 27:2664–2670PubMedCrossRefGoogle Scholar
  78. 78.
    Isik FF, Rand RP, Gruss JS, Benjamin D, Alpers CE (1996) Monocyte chemoattractant protein-1 mRNA expression in hemangiomas and vascular malformations. J Surg Res 61:71–76PubMedCrossRefGoogle Scholar
  79. 79.
    Kraling BM, Razon MJ, Boon LM, Zurakowski D, Seachord C, Darveau RP, Mulliken JB, Corless CL, Bischoff J (1996) E-selectin is present in proliferating endothelial cells in human hemangiomas. Am J Pathol 148:1181–1191PubMedGoogle Scholar
  80. 80.
    Oh IY, Yoon CH, Hur J, Kim JH, Kim TY, Lee CS, Park KW, Chae IH, Oh BH, Park YB et al (2007) Involvement of E-selectin in recruitment of endothelial progenitor cells and angiogenesis in ischemic muscle. Blood 110:3891–3899PubMedCrossRefGoogle Scholar
  81. 81.
    Gainers ME, Descheny L, Barthel SR, Liu L, Wurbel MA, Dimitroff CJ (2007) Skin-homing receptors on effector leukocytes are differentially sensitive to glyco-metabolic antagonism in allergic contact dermatitis. J Immunol 179:8509–8518PubMedGoogle Scholar
  82. 82.
    Hidalgo A, Weiss LA, Frenette PS (2002) Functional selectin ligands mediating human CD34(+) cell interactions with bone marrow endothelium are enhanced postnatally. J Clin Invest 110:559–569PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Vascular Biology Program, Department of Surgery, Children’s Hospital Boston Harvard Medical SchoolBostonUSA

Personalised recommendations