, 12:125 | Cite as

The role of the Angiopoietins in vascular morphogenesis

Original paper


The Angiopoietin/Tie system acts as a vascular specific ligand/receptor system to control endothelial cell survival and vascular maturation. The Angiopoietin family includes four ligands (Angiopoietin-1, Angiopoietin-2 and Angiopoietin-3/4) and two corresponding tyrosine kinase receptors (Tie1 and Tie2). Ang-1 and Ang-2 are specific ligands of Tie2 binding the receptor with similar affinity. Tie2 activation promotes vessel assembly and maturation by mediating survival signals for endothelial cells and regulating the recruitment of mural cells. Ang-1 acts in a paracrine agonistic manner inducing Tie2 phosphorylation and subsequent vessel stabilization. In contrast, Ang-2 is produced by endothelial cells and acts as an autocrine antagonist of Ang-1-mediated Tie2 activation. Ang-2 thereby primes the vascular endothelium to exogenous cytokines and induces vascular destabilization at higher concentrations. Ang-2 is strongly expressed in the vasculature of many tumors and it has been suggested that Ang-2 may act synergistically with other cytokines such as vascular endothelial growth factor to promote tumor-associated angiogenesis and tumor progression. The better mechanistic understanding of the Ang/Tie system is gradually paving the way toward the rationale exploitation of this vascular signaling system as a therapeutic target for neoplastic and non-neoplastic diseases.


Angiogenesis Endothelial cell Angiopoietin Tie 


  1. 1.
    Davis S, Aldrich TH, Jones PF et al (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87:1161–1169. doi: 10.1016/S0092-8674(00)81812-7 PubMedGoogle Scholar
  2. 2.
    Maisonpierre PC, Suri C, Jones PF et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60. doi: 10.1126/science.277.5322.55 PubMedGoogle Scholar
  3. 3.
    Kim I, Kwak HJ, Ahn JE et al (1999) Molecular cloning and characterization of a novel angiopoietin family protein, angiopoietin-3. FEBS Lett 443:353–356. doi: 10.1016/S0014-5793(99)00008-3 PubMedGoogle Scholar
  4. 4.
    Nishimura M, Miki T, Yashima R et al (1999) Angiopoietin-3, a novel member of the angiopoietin family. FEBS Lett 448:254–256. doi: 10.1016/S0014-5793(99)00381-6 PubMedGoogle Scholar
  5. 5.
    Valenzuela DM, Griffiths JA, Rojas J et al (1999) Angiopoietins 3 and 4: diverging gene counterparts in mice and humans. Proc Natl Acad Sci USA 96:1904–1909. doi: 10.1073/pnas.96.5.1904 PubMedGoogle Scholar
  6. 6.
    Kim KT, Choi HH, Steinmetz MO et al (2005) Oligomerization and multimerization are critical for angiopoietin-1 to bind and phosphorylate Tie2. J Biol Chem 280:20126–20131. doi: 10.1074/jbc.M500292200 PubMedGoogle Scholar
  7. 7.
    Procopio WN, Pelavin PI, Lee WM et al (1999) Angiopoietin-1 and -2 coiled coil domains mediate distinct homo-oligomerization patterns, but fibrinogen-like domains mediate ligand activity. J Biol Chem 274:30196–30201. doi: 10.1074/jbc.274.42.30196 PubMedGoogle Scholar
  8. 8.
    Fiedler U, Krissl T, Koidl S et al (2003) Angiopoietin-1 and angiopoietin-2 share the same binding domains in the Tie-2 receptor involving the first Ig-like loop and the epidermal growth factor-like repeats. J Biol Chem 278:1721–1727. doi: 10.1074/jbc.M208550200 PubMedGoogle Scholar
  9. 9.
    Huang YQ, Li JJ, Karpatkin S (2000) Identification of a family of alternatively spliced mRNA species of angiopoietin-1. Blood 95:1993–1999PubMedGoogle Scholar
  10. 10.
    Mezquita J, Mezquita B, Pau M et al (1999) Characterization of a novel form of angiopoietin-2 (Ang-2B) and expression of VEGF and angiopoietin-2 during chicken testicular development and regression. Biochem Biophys Res Commun 260:492–498. doi: 10.1006/bbrc.1999.0934 PubMedGoogle Scholar
  11. 11.
    Kim I, Kim JH, Ryu YS et al (2000) Characterization and expression of a novel alternatively spliced human angiopoietin-2. J Biol Chem 275:18550–18556. doi: 10.1074/jbc.M910084199 PubMedGoogle Scholar
  12. 12.
    Kim I, Kim JH, Moon SO et al (2000) Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Oncogene 19:4549–4552. doi: 10.1038/sj.onc.1203800 PubMedGoogle Scholar
  13. 13.
    Teichert-Kuliszewska K, Maisonpierre PC, Jones N et al (2001) Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2. Cardiovasc Res 49:659–670. doi: 10.1016/S0008-6363(00)00231-5 PubMedGoogle Scholar
  14. 14.
    Daly C, Pasnikowski E, Burova E et al (2006) Angiopoietin-2 functions as an autocrine protective factor in stressed endothelial cells. Proc Natl Acad Sci USA 103:15491–15496. doi: 10.1073/pnas.0607538103 PubMedGoogle Scholar
  15. 15.
    Fiedler U, Scharpfenecker M, Koidl S et al (2004) The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood 103:4150–4156. doi: 10.1182/blood-2003-10-3685 PubMedGoogle Scholar
  16. 16.
    Scharpfenecker M, Fiedler U, Reiss Y et al (2005) The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. J Cell Sci 118:771–780. doi: 10.1242/jcs.01653 PubMedGoogle Scholar
  17. 17.
    Oh H, Takagi H, Suzuma K et al (1999) Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem 274:15732–15739. doi: 10.1074/jbc.274.22.15732 PubMedGoogle Scholar
  18. 18.
    Kim I, Kim JH, Ryu YS et al (2000) Tumor necrosis factor-alpha upregulates angiopoietin-2 in human umbilical vein endothelial cells. Biochem Biophys Res Commun 269:361–365. doi: 10.1006/bbrc.2000.2296 PubMedGoogle Scholar
  19. 19.
    Huang YQ, Li JJ, Hu L et al (2002) Thrombin induces increased expression and secretion of angiopoietin-2 from human umbilical vein endothelial cells. Blood 99:1646–1650. doi: 10.1182/blood.V99.5.1646 PubMedGoogle Scholar
  20. 20.
    Pichiule P, Chavez JC, LaManna JC (2004) Hypoxic regulation of angiopoietin-2 expression in endothelial cells. J Biol Chem 279:12171–12180. doi: 10.1074/jbc.M305146200 PubMedGoogle Scholar
  21. 21.
    Goede V, Schmidt T, Kimmina S et al (1998) Analysis of blood vessel maturation processes during cyclic ovarian angiogenesis. Lab Invest 78:1385–1394PubMedGoogle Scholar
  22. 22.
    Zagzag D, Hooper A, Friedlander DR et al (1999) In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis. Exp Neurol 159:391–400. doi: 10.1006/exnr.1999.7162 PubMedGoogle Scholar
  23. 23.
    Zhang L, Yang N, Park JW et al (2003) Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res 63:3403–3412PubMedGoogle Scholar
  24. 24.
    Oliner J, Min H, Leal J et al (2004) Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell 6:507–516. doi: 10.1016/j.ccr.2004.09.030 PubMedGoogle Scholar
  25. 25.
    Tanaka S, Mori M, Sakamoto Y et al (1999) Biologic significance of angiopoietin-2 expression in human hepatocellular carcinoma. J Clin Invest 103:341–345. doi: 10.1172/JCI4891 PubMedGoogle Scholar
  26. 26.
    Koga K, Todaka T, Morioka M et al (2001) Expression of angiopoietin-2 in human glioma cells and its role for angiogenesis. Cancer Res 61:6248–6254PubMedGoogle Scholar
  27. 27.
    Torimura T, Ueno T, Kin M et al (2004) Overexpression of angiopoietin-1 and angiopoietin-2 in hepatocellular carcinoma. J Hepatol 40:799–807. doi: 10.1016/j.jhep.2004.01.027 PubMedGoogle Scholar
  28. 28.
    Hackett SF, Ozaki H, Strauss RW et al (2000) Angiopoietin 2 expression in the retina: upregulation during physiologic and pathologic neovascularization. J Cell Physiol 184:275–284. doi: 10.1002/1097-4652(200009)184:3<275::AID-JCP1>3.0.CO;2-7 PubMedGoogle Scholar
  29. 29.
    Yao D, Taguchi T, Matsumura T et al (2007) High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. J Biol Chem 282:31038–31045. doi: 10.1074/jbc.M704703200 PubMedGoogle Scholar
  30. 30.
    Suri C, Jones PF, Patan S et al (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180. doi: 10.1016/S0092-8674(00)81813-9 PubMedGoogle Scholar
  31. 31.
    Gale NW, Thurston G, Hackett SF et al (2002) Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 3:411–423. doi: 10.1016/S1534-5807(02)00217-4 PubMedGoogle Scholar
  32. 32.
    Stratmann A, Risau W, Plate KH (1998) Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol 153:1459–1466PubMedGoogle Scholar
  33. 33.
    Schnurch H, Risau W (1993) Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage. Development 119:957–968PubMedGoogle Scholar
  34. 34.
    Macdonald PR, Progias P, Ciani B et al (2006) Structure of the extracellular domain of Tie receptor tyrosine kinases and localization of the angiopoietin-binding epitope. J Biol Chem 281:28408–28414. doi: 10.1074/jbc.M605219200 PubMedGoogle Scholar
  35. 35.
    Korhonen J, Polvi A, Partanen J et al (1994) The mouse tie receptor tyrosine kinase gene: expression during embryonic angiogenesis. Oncogene 9:395–403PubMedGoogle Scholar
  36. 36.
    Marron MB, Hughes DP, Edge MD et al (2000) Evidence for heterotypic interaction between the receptor tyrosine kinases TIE-1 and TIE-2. J Biol Chem 275:39741–39746. doi: 10.1074/jbc.M007189200 PubMedGoogle Scholar
  37. 37.
    Tsiamis AC, Morris PN, Marron MB et al (2002) Vascular endothelial growth factor modulates the Tie-2:Tie-1 receptor complex. Microvasc Res 63:149–158. doi: 10.1006/mvre.2001.2377 PubMedGoogle Scholar
  38. 38.
    Marron MB, Singh H, Tahir TA et al (2007) Regulated proteolytic processing of Tie1 modulates ligand responsiveness of the receptor-tyrosine kinase Tie2. J Biol Chem 282:30509–30517. doi: 10.1074/jbc.M702535200 PubMedGoogle Scholar
  39. 39.
    Yabkowitz R, Meyer S, Yanagihara D et al (1997) Regulation of tie receptor expression on human endothelial cells by protein kinase C-mediated release of soluble tie. Blood 90:706–715PubMedGoogle Scholar
  40. 40.
    Yabkowitz R, Meyer S, Black T et al (1999) Inflammatory cytokines and vascular endothelial growth factor stimulate the release of soluble tie receptor from human endothelial cells via metalloprotease activation. Blood 93:1969–1979PubMedGoogle Scholar
  41. 41.
    Chen-Konak L, Guetta-Shubin Y, Yahav H et al (2003) Transcriptional and post-translation regulation of the Tie1 receptor by fluid shear stress changes in vascular endothelial cells. FASEB J 17:2121–2123PubMedGoogle Scholar
  42. 42.
    Saharinen P, Kerkela K, Ekman N et al (2005) Multiple angiopoietin recombinant proteins activate the Tie1 receptor tyrosine kinase and promote its interaction with Tie2. J Cell Biol 169:239–243. doi: 10.1083/jcb.200411105 PubMedGoogle Scholar
  43. 43.
    Dumont DJ, Yamaguchi TP, Conlon RA et al (1992) Tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene 7:1471–1480PubMedGoogle Scholar
  44. 44.
    Sato TN, Tozawa Y, Deutsch U et al (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376:70–74. doi: 10.1038/376070a0 PubMedGoogle Scholar
  45. 45.
    Brown LF, Dezube BJ, Tognazzi K et al (2000) Expression of Tie1, Tie2, and angiopoietins 1, 2, and 4 in Kaposi’s sarcoma and cutaneous angiosarcoma. Am J Pathol 156:2179–2183PubMedGoogle Scholar
  46. 46.
    Helfrich I, Edler L, Sucker A et al (2009) Angiopoietin-2 levels are associated with disease progression in metastatic malignant melanoma. Clin Cancer Res 15:1384–1392. doi: 10.1158/1078-0432.CCR-08-1615 PubMedGoogle Scholar
  47. 47.
    De Palma M, Venneri MA, Galli R et al (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211–226. doi: 10.1016/j.ccr.2005.08.002 PubMedGoogle Scholar
  48. 48.
    Wong AL, Haroon ZA, Werner S et al (1997) Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ Res 81:567–574PubMedGoogle Scholar
  49. 49.
    Peters KG, Coogan A, Berry D et al (1998) Expression of Tie2/Tek in breast tumour vasculature provides a new marker for evaluation of tumour angiogenesis. Br J Cancer 77:51–56PubMedGoogle Scholar
  50. 50.
    Takahama M, Tsutsumi M, Tsujiuchi T et al (1999) Enhanced expression of Tie2, its ligand angiopoietin-1, vascular endothelial growth factor, and CD31 in human non-small cell lung carcinomas. Clin Cancer Res 5:2506–2510PubMedGoogle Scholar
  51. 51.
    Dumont DJ, Gradwohl G, Fong GH et al (1994) Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8:1897–1909. doi: 10.1101/gad.8.16.1897 PubMedGoogle Scholar
  52. 52.
    Patan S (1998) TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth. Microvasc Res 56:1–21. doi: 10.1006/mvre.1998.2081 PubMedGoogle Scholar
  53. 53.
    Takakura N, Huang XL, Naruse T et al (1998) Critical role of the TIE2 endothelial cell receptor in the development of definitive hematopoiesis. Immunity 9:677–686. doi: 10.1016/S1074-7613(00)80665-2 PubMedGoogle Scholar
  54. 54.
    Jones N, Voskas D, Master Z et al (2001) Rescue of the early vascular defects in Tek/Tie2 null mice reveals an essential survival function. EMBO Rep 2:438–445PubMedGoogle Scholar
  55. 55.
    Takagi H, Koyama S, Seike H et al (2003) Potential role of the angiopoietin/tie2 system in ischemia-induced retinal neovascularization. Invest Ophthalmol Vis Sci 44:393–402. doi: 10.1167/iovs.02-0276 PubMedGoogle Scholar
  56. 56.
    Reusch P, Barleon B, Weindel K et al (2001) Identification of a soluble form of the angiopoietin receptor TIE-2 released from endothelial cells and present in human blood. Angiogenesis 4:123–131. doi: 10.1023/A:1012226627813 PubMedGoogle Scholar
  57. 57.
    Chung NA, Makin AJ, Lip GY (2003) Measurement of the soluble angiopoietin receptor tie-2 in patients with coronary artery disease: development and application of an immunoassay. Eur J Clin Invest 33:529–535. doi: 10.1046/j.1365-2362.2003.01173.x PubMedGoogle Scholar
  58. 58.
    Vikkula M, Boon LM, Carraway KL 3rd et al (1996) Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell 87:1181–1190. doi: 10.1016/S0092-8674(00)81814-0 PubMedGoogle Scholar
  59. 59.
    Rodewald HR, Sato TN (1996) Tie1, a receptor tyrosine kinase essential for vascular endothelial cell integrity, is not critical for the development of hematopoietic cells. Oncogene 12:397–404PubMedGoogle Scholar
  60. 60.
    Puri MC, Partanen J, Rossant J et al (1999) Interaction of the TEK and TIE receptor tyrosine kinases during cardiovascular development. Development 126:4569–4580PubMedGoogle Scholar
  61. 61.
    Ward NL, Van Slyke P, Sturk C et al (2004) Angiopoietin 1 expression levels in the myocardium direct coronary vessel development. Dev Dyn 229:500–509. doi: 10.1002/dvdy.10479 PubMedGoogle Scholar
  62. 62.
    Suri C, McClain J, Thurston G et al (1998) Increased vascularization in mice overexpressing angiopoietin-1. Science 282:468–471. doi: 10.1126/science.282.5388.468 PubMedGoogle Scholar
  63. 63.
    Reiss Y, Droste J, Heil M, Tribulova S et al (2007) Angiopoietin-2 impairs revascularization after limb ischemia. Circ Res 101:88–96. doi: 10.1161/CIRCRESAHA.106.143594 PubMedGoogle Scholar
  64. 64.
    Hammes HP, Lin J, Wagner P et al (2004) Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy. Diabetes 53:1104–1110. doi: 10.2337/diabetes.53.4.1104 PubMedGoogle Scholar
  65. 65.
    Holash J, Maisonpierre PC, SJ ComptonD et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998PubMedGoogle Scholar
  66. 66.
    Lobov IB, Brooks PC, Lang RA (2002) Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci USA 99:11205–11210. doi: 10.1073/pnas.172161899 PubMedGoogle Scholar
  67. 67.
    Korff T, Kimmina S, Martiny-Baron G et al (2001) Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. FASEB J 15:447–457. doi: 10.1096/fj.00-0139com PubMedGoogle Scholar
  68. 68.
    Fiedler U, Reiss Y, Scharpfenecker M et al (2006) Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 12:235–239. doi: 10.1038/nm1351 PubMedGoogle Scholar
  69. 69.
    Shimoda H, Bernas MJ, Witte MH et al (2007) Abnormal recruitment of periendothelial cells to lymphatic capillaries in digestive organs of angiopoietin-2-deficient mice. Cell Tissue Res 328:329–337. doi: 10.1007/s00441-006-0360-8 PubMedGoogle Scholar
  70. 70.
    Hackett SF, Wiegand S, Yancopoulos G et al (2002) Angiopoietin-2 plays an important role in retinal angiogenesis. J Cell Physiol 192:182–187. doi: 10.1002/jcp.10128 PubMedGoogle Scholar
  71. 71.
    Dumont DJ, Gradwohl GJ, Fong GH et al (1993) The endothelial-specific receptor tyrosine kinase, tek, is a member of a new subfamily of receptors. Oncogene 8:1293–1301PubMedGoogle Scholar
  72. 72.
    Kim I, Kim HG, So JN et al (2000) Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3’-Kinase/Akt signal transduction pathway. Circ Res 86:24–29PubMedGoogle Scholar
  73. 73.
    Jones N, Iljin K, Dumont DJ et al (2001) Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nat Rev Mol Cell Biol 2:257–267. doi: 10.1038/35067005 PubMedGoogle Scholar
  74. 74.
    Hodous BL, Geuns-Meyer SD, Hughes PE et al (2007) Evolution of a highly selective and potent 2-(pyridin-2-yl)-1, 3, 5-triazine Tie-2 kinase inhibitor. J Med Chem 50:611–626. doi: 10.1021/jm061107l PubMedGoogle Scholar
  75. 75.
    Semones M, Feng Y, Johnson N et al (2007) Pyridinylimidazole inhibitors of Tie2 kinase. Bioorg Med Chem Lett 17:4756–4760. doi: 10.1016/j.bmcl.2007.06.068 PubMedGoogle Scholar
  76. 76.
    Cardone MH, Roy N, Stennicke HR et al (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321. doi: 10.1126/science.282.5392.1318 PubMedGoogle Scholar
  77. 77.
    Papapetropoulos FultonD, Mahboubi KA et al (2000) Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem 275:9102–9105. doi: 10.1074/jbc.275.13.9102 PubMedGoogle Scholar
  78. 78.
    Harfouche R, Hassessian HM, Guo Y et al (2002) Mechanisms which mediate the antiapoptotic effects of angiopoietin-1 on endothelial cells. Microvasc Res 64:135–147. doi: 10.1006/mvre.2002.2421 PubMedGoogle Scholar
  79. 79.
    Iivanainen E, Nelimarkka L, Elenius V et al (2003) Angiopoietin-regulated recruitment of vascular smooth muscle cells by endothelial-derived heparin binding EGF-like growth factor. FASEB J 17:1609–1621. doi: 10.1096/fj.02-0939com PubMedGoogle Scholar
  80. 80.
    Kobayashi H, DeBusk LM, Babichev YO et al (2006) Hepatocyte growth factor mediates angiopoietin-induced smooth muscle cell recruitment. Blood 108:1260–1266. doi: 10.1182/blood-2005-09-012807 PubMedGoogle Scholar
  81. 81.
    Lindahl P, Johansson BR, Leveen P et al (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245. doi: 10.1126/science.277.5323.242 PubMedGoogle Scholar
  82. 82.
    Hellstrom M, Kalen M, Lindahl P et al (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055PubMedGoogle Scholar
  83. 83.
    Uemura A et al (2002) Recombinant angiopoietin-1 restores higher-order architecture of growing blood vessels in mice in the absence of mural cells. J Clin Invest 110:1619–1628PubMedGoogle Scholar
  84. 84.
    Hirschi KK, Rohovsky SA, D’Amore PA (1998) PDGF, TGF-beta, and heterotypic cell–cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141:805–814. doi: 10.1083/jcb.141.3.805 PubMedGoogle Scholar
  85. 85.
    Oh SP, Seki T, Goss KA et al (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci USA 97:2626–2631. doi: 10.1073/pnas.97.6.2626 PubMedGoogle Scholar
  86. 86.
    Nishishita T, Lin PC (2004) Angiopoietin 1, PDGF-B, and TGF-beta gene regulation in endothelial cell and smooth muscle cell interaction. J Cell Biochem 91:584–593. doi: 10.1002/jcb.10718 PubMedGoogle Scholar
  87. 87.
    Kidoya H, Ueno M, Yamada Y et al (2008) Spatial and temporal role of the apelin/APJ system in the caliber size regulation of blood vessels during angiogenesis. EMBO J 27:522–534. doi: 10.1038/sj.emboj.7601982 PubMedGoogle Scholar
  88. 88.
    Fukuhara S, Sako K, Minami T et al (2008) Differential function of Tie2 at cell-cell contacts and cell-substratum contacts regulated by angiopoietin-1. Nat Cell Biol 10:513–526. doi: 10.1038/ncb1714 PubMedGoogle Scholar
  89. 89.
    Saharinen P, Eklund L, Miettinen J et al (2008) Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell–cell and cell-matrix contacts. Nat Cell Biol 10:527–537. doi: 10.1038/ncb1715 PubMedGoogle Scholar
  90. 90.
    Jones N, Dumont DJ (1998) The Tek/Tie2 receptor signals through a novel Dok-related docking protein, Dok-R. Oncogene 17:1097–1108. doi: 10.1038/sj.onc.1202115 PubMedGoogle Scholar
  91. 91.
    Gavard J, Gutkind JS (2006) VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 8:1223–1234. doi: 10.1038/ncb1486 PubMedGoogle Scholar
  92. 92.
    Dejana E, Orsenigo F, Lampugnani MG (2008) The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 121:2115–2122. doi: 10.1242/jcs.017897 PubMedGoogle Scholar
  93. 93.
    Gavard J, Patel V, Gutkind JS (2008) Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev Cell 14:25–36. doi: 10.1016/j.devcel.2007.10.019 PubMedGoogle Scholar
  94. 94.
    Li X, Hahn CN, Parsons M et al (2004) Role of protein kinase Czeta in thrombin-induced endothelial permeability changes: inhibition by angiopoietin-1. Blood 104:1716–1724. doi: 10.1182/blood-2003-11-3744 PubMedGoogle Scholar
  95. 95.
    Li X, Stankovic M, Bonder CS et al (2008) Basal and angiopoietin-1-mediated endothelial permeability is regulated by sphingosine kinase-1. Blood 111:3489–3497. doi: 10.1182/blood-2007-05-092148 PubMedGoogle Scholar
  96. 96.
    Huang L, Turck CW, Rao P et al (1995) GRB2 and SH-PTP2: potentially important endothelial signaling molecules downstream of the TEK/TIE2 receptor tyrosine kinase. Oncogene 11:2097–2103PubMedGoogle Scholar
  97. 97.
    Kontos CD, Stauffer TP, Yang WP et al (1998) Tyrosine 1101 of Tie2 is the major site of association of p85 and is required for activation of phosphatidylinositol 3-kinase and Akt. Mol Cell Biol 18:4131–4140PubMedGoogle Scholar
  98. 98.
    Peters KG, Kontos CD, Lin PC et al (2004) Functional significance of Tie2 signaling in the adult vasculature. Recent Prog Horm Res 59:51–71. doi: 10.1210/rp.59.1.51 PubMedGoogle Scholar
  99. 99.
    Fujikawa K, de Aos Scherpenseel I, Jain SK et al (1999) Role of PI 3-kinase in angiopoietin-1-mediated migration and attachment-dependent survival of endothelial cells. Exp Cell Res 253:663–672. doi: 10.1006/excr.1999.4693 PubMedGoogle Scholar
  100. 100.
    Kim I, Oh JL, Ryu YS et al (2002) Angiopoietin-1 negatively regulates expression and activity of tissue factor in endothelial cells. FASEB J 16:126–128PubMedGoogle Scholar
  101. 101.
    Zhu WH, Nicosia RF (2002) The thin prep rat aortic ring assay: a modified method for the characterization of angiogenesis in whole mounts. Angiogenesis 5:81–86. doi: 10.1023/A:1021509004829 PubMedGoogle Scholar
  102. 102.
    Jones N, Chen SH, Sturk C et al (2003) A unique autophosphorylation site on Tie2/Tek mediates Dok-R phosphotyrosine binding domain binding and function. Mol Cell Biol 23:2658–2668. doi: 10.1128/MCB.23.8.2658-2668.2003 PubMedGoogle Scholar
  103. 103.
    Kim I, Kim HG, Moon SO et al (2000) Angiopoietin-1 induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion. Circ Res 86:952–959PubMedGoogle Scholar
  104. 104.
    Tournaire R, Simon MP, le Noble F et al (2004) A short synthetic peptide inhibits signal transduction, migration and angiogenesis mediated by Tie2 receptor. EMBO Rep 5:262–267. doi: 10.1038/sj.embor.7400100 PubMedGoogle Scholar
  105. 105.
    Witzenbichler B, Westermann D, Knueppel S et al (2005) Protective role of angiopoietin-1 in endotoxic shock. Circulation 111:97–105. doi: 10.1161/01.CIR.0000151287.08202.8E PubMedGoogle Scholar
  106. 106.
    Kim I, Moon SO, Park SK et al (2001) Angiopoietin-1 reduces VEGF-stimulated leukocyte adhesion to endothelial cells by reducing ICAM-1, VCAM-1, and E-selectin expression. Circ Res 89:477–479. doi: 10.1161/hh1801.097034 PubMedGoogle Scholar
  107. 107.
    Nykanen AI, Krebs R, Saaristo A et al (2003) Angiopoietin-1 protects against the development of cardiac allograft arteriosclerosis. Circulation 107:1308–1314. doi: 10.1161/01.CIR.0000054623.35669.3F PubMedGoogle Scholar
  108. 108.
    Cho CH, Kammerer RA, Lee HJ et al (2004) Designed angiopoietin-1 variant, COMP-Ang1, protects against radiation-induced endothelial cell apoptosis. Proc Natl Acad Sci USA 101:5553–5558. doi: 10.1073/pnas.0307575101 PubMedGoogle Scholar
  109. 109.
    Hughes DP, Marron MB, Brindle NP (2003) The antiinflammatory endothelial tyrosine kinase Tie2 interacts with a novel nuclear factor-kappaB inhibitor ABIN-2. Circ Res 92:630–636. doi: 10.1161/01.RES.0000063422.38690.DC PubMedGoogle Scholar
  110. 110.
    Jeon BH, Khanday F, Deshpande S et al (2003) Tie-ing the antiinflammatory effect of angiopoietin-1 to inhibition of NF-kappaB. Circ Res 92:586–588. doi: 10.1161/01.RES.0000066881.04116.45 PubMedGoogle Scholar
  111. 111.
    Tadros A, Hughes DP, Dunmore BJ et al (2003) ABIN-2 protects endothelial cells from death and has a role in the antiapoptotic effect of angiopoietin-1. Blood 102:4407–4409. doi: 10.1182/blood-2003-05-1602 PubMedGoogle Scholar
  112. 112.
    Gravallese EM, Pettit AR, Lee R et al (2003) Angiopoietin-1 is expressed in the synovium of patients with rheumatoid arthritis and is induced by tumour necrosis factor alpha. Ann Rheum Dis 62:100–107. doi: 10.1136/ard.62.2.100 PubMedGoogle Scholar
  113. 113.
    Scott BB, Zaratin PF, Gilmartin AG et al (2005) TNF-alpha modulates angiopoietin-1 expression in rheumatoid synovial fibroblasts via the NF-kappa B signalling pathway. Biochem Biophys Res Commun 328:409–414. doi: 10.1016/j.bbrc.2004.12.180 PubMedGoogle Scholar
  114. 114.
    Grall F, Gu X, Tan L et al (2003) Responses to the proinflammatory cytokines interleukin-1 and tumor necrosis factor alpha in cells derived from rheumatoid synovium and other joint tissues involve nuclear factor kappaB-mediated induction of the Ets transcription factor ESE-1. Arthritis Rheum 48:1249–1260. doi: 10.1002/art.10942 PubMedGoogle Scholar
  115. 115.
    Brown C, Gaspar J, Pettit A et al (2004) ESE-1 is a novel transcriptional mediator of angiopoietin-1 expression in the setting of inflammation. J Biol Chem 279:12794–12803. doi: 10.1074/jbc.M308593200 PubMedGoogle Scholar
  116. 116.
    Parikh SM, Mammoto T, Schultz A et al (2006) Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Med 3:e46. doi: 10.1371/journal.pmed.0030046 PubMedGoogle Scholar
  117. 117.
    Gallagher DC, Parikh SM, Balonov K et al (2007) Circulating Angiopoietin 2 correlates with mortality in a surgical population with acute lung injury/adult respiratory distress syndrome. Shock 29:656–661Google Scholar
  118. 118.
    Orfanos SE, Kotanidou A, Glynos C et al (2007) Angiopoietin-2 is increased in severe sepsis: correlation with inflammatory mediators. Crit Care Med 35:199–206. doi: 10.1097/01.CCM.0000251640.77679.D7 PubMedGoogle Scholar
  119. 119.
    Siner JM, Bhandari V, Engle KM, et al. (2009) Elevated serum Angiopoietin 2 levels are associated with increased mortality in sepsis. Shock 31:348–353PubMedCrossRefGoogle Scholar
  120. 120.
    Fearon U, Griosios K, Fraser A et al (2003) Angiopoietins, growth factors, and vascular morphology in early arthritis. J Rheumatol 30:260–268PubMedGoogle Scholar
  121. 121.
    Kuroda K, Sapadin A, Shoji T et al (2001) Altered expression of angiopoietins and Tie2 endothelium receptor in psoriasis. J Invest Dermatol 116:713–720. doi: 10.1046/j.1523-1747.2001.01316.x PubMedGoogle Scholar
  122. 122.
    Etoh T, Inoue H, Tanaka S et al (2001) Angiopoietin-2 is related to tumor angiogenesis in gastric carcinoma: possible in vivo regulation via induction of proteases. Cancer Res 61:2145–2153PubMedGoogle Scholar
  123. 123.
    Hu B, Guo P, Fang Q et al (2003) Angiopoietin-2 induces human glioma invasion through the activation of matrix metalloprotease-2. Proc Natl Acad Sci USA 100:8904–8909. doi: 10.1073/pnas.1533394100 PubMedGoogle Scholar
  124. 124.
    Mandriota SJ, Pepper MS (1998) Regulation of angiopoietin-2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia. Circ Res 83:852–859PubMedGoogle Scholar
  125. 125.
    Krikun G, Schatz F, Finlay T et al (2000) Expression of angiopoietin-2 by human endometrial endothelial cells: regulation by hypoxia and inflammation. Biochem Biophys Res Commun 275:159–163. doi: 10.1006/bbrc.2000.3277 PubMedGoogle Scholar
  126. 126.
    Yamakawa M, Liu LX, Date T et al (2003) Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res 93:664–673. doi: 10.1161/01.RES.0000093984.48643.D7 PubMedGoogle Scholar
  127. 127.
    Hegen A, Koidl S, Weindel K et al (2004) Expression of angiopoietin-2 in endothelial cells is controlled by positive and negative regulatory promoter elements. Arterioscler Thromb Vasc Biol 24:1803–1809. doi: 10.1161/01.ATV.0000140819.81839.0e PubMedGoogle Scholar
  128. 128.
    Lund EL, Hog A, Olsen MW et al (2004) Differential regulation of VEGF, HIF1alpha and angiopoietin-1, -2 and -4 by hypoxia and ionizing radiation in human glioblastoma. Int J Cancer 108:833–838. doi: 10.1002/ijc.11662 PubMedGoogle Scholar
  129. 129.
    Watanabe D, Takagi H, Suzuma K et al (2004) Transcription factor Ets-1 mediates ischemia- and vascular endothelial growth factor-dependent retinal neovascularization. Am J Pathol 164:1827–1835PubMedGoogle Scholar
  130. 130.
    Goettsch W, Gryczka C, Korff T et al (2008) Flow-dependent regulation of angiopoietin-2. J Cell Physiol 214:491–503. doi: 10.1002/jcp.21229 PubMedGoogle Scholar
  131. 131.
    Milkiewicz M, Uchida C, Gee E et al. (2008) Shear stress-induced Ets-1 modulates protease inhibitor expression in microvascular endothelial cells. J Cell PhysiolGoogle Scholar
  132. 132.
    Daly C, Wong V, Burova E et al (2004) Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription factor FKHR (FOXO1). Genes Dev 18:1060–1071. doi: 10.1101/gad.1189704 PubMedGoogle Scholar
  133. 133.
    Vajkoczy P, Farhadi M, Gaumann A et al (2002) Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2. J Clin Invest 109:777–785PubMedGoogle Scholar
  134. 134.
    Machein MR, Knedla A, Knoth R et al (2004) Angiopoietin-1 promotes tumor angiogenesis in a rat glioma model. Am J Pathol 165:1557–1570PubMedGoogle Scholar
  135. 135.
    Zhou YZ, Fang XQ, Li HQ et al (2007) Role of serum angiopoietin-2 level in screening for esophageal squamous cell cancer and its precursors. Chin Med J (Engl) 120:1216–1219Google Scholar
  136. 136.
    Kuboki S, Shimizu H, Mitsuhashi N et al. (2008) Angiopoietin-2 levels in the hepatic vein as a useful predictor of tumor invasiveness and prognosis in human hepatocellular carcinoma. J Gastroenterol Hepatol 23:157–164Google Scholar
  137. 137.
    Park JH, Park KJ, Kim YS et al (2007) Serum angiopoietin-2 as a clinical marker for lung cancer. Chest 132:200–206. doi: 10.1378/chest.06-2915 PubMedGoogle Scholar
  138. 138.
    Ahmad SA, Liu W, Jung YD et al (2001) Differential expression of angiopoietin-1 and angiopoietin-2 in colon carcinoma. A possible mechanism for the initiation of angiogenesis. Cancer 92:1138–1143. doi: 10.1002/1097-0142(20010901)92:5<1138::AID-CNCR1431>3.0.CO;2-L PubMedGoogle Scholar
  139. 139.
    Oka N, Yamamoto Y, Takahashi M et al (2005) Expression of angiopoietin-1 and -2, and its clinical significance in human bladder cancer. BJU Int 95:660–663. doi: 10.1111/j.1464-410X.2005.05358.x PubMedGoogle Scholar
  140. 140.
    Takanami I (2004) Overexpression of Ang-2 mRNA in non-small cell lung cancer: association with angiogenesis and poor prognosis. Oncol Rep 12:849–853PubMedGoogle Scholar
  141. 141.
    Cai M, Zhang H, Hui R (2003) Single chain Fv antibody against angiopoietin-2 inhibits VEGF-induced endothelial cell proliferation and migration in vitro. Biochem Biophys Res Commun 309:946–951. doi: 10.1016/j.bbrc.2003.08.086 PubMedGoogle Scholar
  142. 142.
    White RR, Shan S, Rusconi CP et al (2003) Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2. Proc Natl Acad Sci USA 100:5028–5033. doi: 10.1073/pnas.0831159100 PubMedGoogle Scholar
  143. 143.
    Imanishi Y, Hu B, Jarzynka MJ et al (2007) Angiopoietin-2 stimulates breast cancer metastasis through the alpha(5)beta(1) integrin-mediated pathway. Cancer Res 67:4254–4263PubMedGoogle Scholar
  144. 144.
    Yu Q, Stamenkovic I (2001) Angiopoietin-2 is implicated in the regulation of tumor angiogenesis. Am J Pathol 158:563–570PubMedGoogle Scholar
  145. 145.
    Hawighorst T, Skobe M, Streit M et al (2002) Activation of the tie2 receptor by angiopoietin-1 enhances tumor vessel maturation and impairs squamous cell carcinoma growth. Am J Pathol 160:1381–1392PubMedGoogle Scholar
  146. 146.
    Hayes AJ, Huang WQ, Yu J et al (2000) Expression and function of angiopoietin-1 in breast cancer. Br J Cancer 83:1154–1160. doi: 10.1054/bjoc.2000.1437 PubMedGoogle Scholar
  147. 147.
    Stoeltzing O, Ahmad SA, Liu W et al (2003) Angiopoietin-1 inhibits vascular permeability, angiogenesis, and growth of hepatic colon cancer tumors. Cancer Res 63:3370–3377PubMedGoogle Scholar
  148. 148.
    Tian S, Hayes AJ, Metheny-Barlow LJ et al (2002) Stabilization of breast cancer xenograft tumour neovasculature by angiopoietin-1. Br J Cancer 86:645–651. doi: 10.1038/sj.bjc.6600082 PubMedGoogle Scholar
  149. 149.
    Nakayama T, Yao L, Tosato G (2004) Mast cell-derived angiopoietin-1 plays a critical role in the growth of plasma cell tumors. J Clin Invest 114:1317–1325PubMedGoogle Scholar
  150. 150.
    Shim WS, Teh M, Mack PO et al (2001) Inhibition of angiopoietin-1 expression in tumor cells by an antisense RNA approach inhibited xenograft tumor growth in immunodeficient mice. Int J Cancer 94:6–15. doi: 10.1002/ijc.1428 PubMedGoogle Scholar
  151. 151.
    Carlson TR, Feng Y, Maisonpierre PC et al (2001) Direct cell adhesion to the angiopoietins mediated by integrins. J Biol Chem 276:26516–26525. doi: 10.1074/jbc.M100282200 PubMedGoogle Scholar
  152. 152.
    Hu B, Jarzynka MJ, Guo P et al (2006) Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbeta1 integrin and focal adhesion kinase signaling pathway. Cancer Res 66:775–783. doi: 10.1158/0008-5472.CAN-05-1149 PubMedGoogle Scholar
  153. 153.
    Cascone I, Napione L, Maniero F et al (2005) Stable interaction between alpha5beta1 integrin and Tie2 tyrosine kinase receptor regulates endothelial cell response to Ang-1. J Cell Biol 170:993–1004. doi: 10.1083/jcb.200507082 PubMedGoogle Scholar
  154. 154.
    Dallabrida SM, Ismail N, Oberle JR et al (2005) Angiopoietin-1 promotes cardiac and skeletal myocyte survival through integrins. Circ Res 96:e8–e24. doi: 10.1161/01.RES.0000158285.57191.60 PubMedGoogle Scholar
  155. 155.
    Dallabrida SM, Ismail NS, Pravda EA et al (2008) Integrin binding angiopoietin-1 monomers reduce cardiac hypertrophy. FASEB J 22:3010–3023. doi: 10.1096/fj.07-100966 PubMedGoogle Scholar
  156. 156.
    Ward NL, Putoczki T, Mearow K et al (2005) Vascular-specific growth factor angiopoietin 1 is involved in the organization of neuronal processes. J Comp Neurol 482:244–256. doi: 10.1002/cne.20422 PubMedGoogle Scholar
  157. 157.
    Valable S, Bellail A, Lesne S et al (2003) Angiopoietin-1-induced PI3-kinase activation prevents neuronal apoptosis. FASEB J 17:443–445PubMedGoogle Scholar
  158. 158.
    Arai F, Hirao A, Ohmura M et al (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:149–161. doi: 10.1016/j.cell.2004.07.004 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Joint Research Division Vascular Biology, Medical Faculty Mannheim (CBTM)University of HeidelbergHeidelbergGermany
  2. 2.Roche Diagnostics GmbHPharma Research PenzbergPenzbergGermany
  3. 3.German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance)HeidelbergGermany

Personalised recommendations