, Volume 12, Issue 2, pp 177–185

Cooperation between integrin ανβ3 and VEGFR2 in angiogenesis

  • Payaningal R. Somanath
  • Nikolay L. Malinin
  • Tatiana V. Byzova
Review Paper


The cross-talk between receptor tyrosine kinases and integrin receptors are known to be crucial for a number of cellular functions. On endothelial cells, an interaction between integrin αvβ3 and VEGFR2 seems to be particularly important process during vascularization. Importantly, the functional association between VEGFR2 and integrin αvβ3 is of reciprocal nature since each receptor is able to promote activation of its counterpart. This mutually beneficial relationship regulates a number of cellular activities involved in angiogenesis, including endothelial cell migration, survival and tube formation, and hematopoietic cell functions within vasculature. This article discusses several possible mechanisms reported by different labs which mediate formation of the complex between VEGFR-2 and αvβ3 on endothelial cells. The pathological consequences and regulatory events involved in this receptor cross-talk are also presented.


Angiogenesis VEGFR2 Integrin Alpha v beta 3 


  1. 1.
    Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286PubMedCrossRefGoogle Scholar
  2. 2.
    Glade-Bender J et al (2003) VEGF blocking therapy in the treatment of cancer. Expert Opin Biol Ther 3:263–276PubMedCrossRefGoogle Scholar
  3. 3.
    Ribatti D (2008) Napoleone Ferrara and the saga of vascular endothelial growth factor. Endothelium 15:1–8PubMedCrossRefGoogle Scholar
  4. 4.
    Dass CR, Choong PF (2008) Cancer angiogenesis: targeting the heel of Achilles. J Drug Target 16:449–454PubMedCrossRefGoogle Scholar
  5. 5.
    Andreoli CM, Miller JW (2007) Anti-vascular endothelial growth factor therapy for ocular neovascular disease. Curr Opin Ophthalmol 18:502–508PubMedCrossRefGoogle Scholar
  6. 6.
    Papanas N, Maltezos E (2008) Advances in treating the ischaemic diabetic foot. Curr Vasc Pharmacol 6:23–28PubMedCrossRefGoogle Scholar
  7. 7.
    Simo R et al (2006) Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Curr Diabetes Rev 2:71–98PubMedCrossRefGoogle Scholar
  8. 8.
    Stupack DG, Cheresh DA (2004) Integrins and angiogenesis. Curr Top Dev Biol 64:207–238PubMedCrossRefGoogle Scholar
  9. 9.
    Hynes RO (2002) A reevaluation of integrins as regulators of angiogenesis. Nat Med 8:918–921PubMedCrossRefGoogle Scholar
  10. 10.
    Folkman J (2006) Angiogenesis. Annu Rev Med 57:1–18PubMedCrossRefGoogle Scholar
  11. 11.
    Ingber DE, Folkman J (1989) Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol 109:317–330PubMedCrossRefGoogle Scholar
  12. 12.
    Cai W, Chen X (2006) Anti-angiogenic cancer therapy based on integrin alphavbeta3 antagonism. Anticancer Agents Med Chem 6:407–428PubMedCrossRefGoogle Scholar
  13. 13.
    Alghisi GC, Ruegg C (2006) Vascular integrins in tumor angiogenesis: mediators and therapeutic targets. Endothelium 13:113–135PubMedCrossRefGoogle Scholar
  14. 14.
    Kumar CC (2003) Integrin alpha v beta 3 as a therapeutic target for blocking tumor-induced angiogenesis. Curr Drug Targets 4:123–131PubMedCrossRefGoogle Scholar
  15. 15.
    Plow EF et al (2000) Ligand binding to integrins. J Biol Chem 275:21785–21788PubMedCrossRefGoogle Scholar
  16. 16.
    Herouy Y et al (2000) Autologous platelet-derived wound healing factor promotes angiogenesis via alphavbeta3-integrin expression in chronic wounds. Int J Mol Med 6:515–519PubMedGoogle Scholar
  17. 17.
    Leu SJ et al (2002) Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alphavbeta3 and alpha6beta1 in human umbilical vein endothelial cells. J Biol Chem 277:46248–46255PubMedCrossRefGoogle Scholar
  18. 18.
    Brooks PC et al (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157–1164PubMedCrossRefGoogle Scholar
  19. 19.
    Brooks PC et al (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571PubMedCrossRefGoogle Scholar
  20. 20.
    Van WC (1995) Cell adhesion and regulatory molecules involved in tumor formation, hemostasis, and wound healing. Head Neck 17:140–147CrossRefGoogle Scholar
  21. 21.
    Lim EH et al (2005) A review: integrin alphavbeta3-targeted molecular imaging and therapy in angiogenesis. Nanomedicine 1:110–114PubMedGoogle Scholar
  22. 22.
    Cai W et al (2008) Imaging of integrins as biomarkers for tumor angiogenesis. Curr Pharm Des 14:2943–2973PubMedCrossRefGoogle Scholar
  23. 23.
    Cai W et al (2008) Molecular imaging of tumor vasculature. Methods Enzymol 445:141–176PubMedCrossRefGoogle Scholar
  24. 24.
    Hodivala-Dilke K (2008) alphavbeta3 integrin and angiogenesis: a moody integrin in a changing environment. Curr Opin Cell Biol 20:514–519PubMedCrossRefGoogle Scholar
  25. 25.
    Somanath PR et al (2009) Integrin and growth factor receptor alliance in angiogenesis. Cell Biochem Biophys 53:53–64PubMedCrossRefGoogle Scholar
  26. 26.
    D’Andrea LD et al (2006) Peptide-based molecules in angiogenesis. Chem Biol Drug Des 67:115–126PubMedCrossRefGoogle Scholar
  27. 27.
    Lenz HJ (2005) Antiangiogenic agents in cancer therapy. Oncology (Williston Park) 19:17–25Google Scholar
  28. 28.
    Reynolds LE et al (2002) Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat Med 8:27–34PubMedCrossRefGoogle Scholar
  29. 29.
    Weis SM et al (2007) Cooperation between VEGF and beta3 integrin during cardiac vascular development. Blood 109:1962–1970PubMedCrossRefGoogle Scholar
  30. 30.
    Eliceiri BP, Cheresh DA (2000) Role of alpha v integrins during angiogenesis. Cancer J 6(Suppl 3):S245–S249PubMedGoogle Scholar
  31. 31.
    Zhu J et al (2002) beta8 integrins are required for vascular morphogenesis in mouse embryos. Development 129:2891–2903PubMedGoogle Scholar
  32. 32.
    Proctor JM et al (2005) Vascular development of the brain requires beta8 integrin expression in the neuroepithelium. J Neurosci 25:9940–9948PubMedCrossRefGoogle Scholar
  33. 33.
    Lakhe-Reddy S et al (2006) Beta8 integrin binds Rho GDP dissociation inhibitor-1 and activates Rac1 to inhibit mesangial cell myofibroblast differentiation. J Biol Chem 281:19688–19699PubMedCrossRefGoogle Scholar
  34. 34.
    Mahabeleshwar GH et al (2006) Integrin signaling is critical for pathological angiogenesis. J Exp Med 203:2495–2507PubMedCrossRefGoogle Scholar
  35. 35.
    Chew DP, Bhatt DL (2001) Oral glycoprotein IIb/IIIa antagonists in coronary artery disease. Curr Cardiol Rep 3:63–71PubMedCrossRefGoogle Scholar
  36. 36.
    Maranian AM, Steinhubl SR (2002) Glycoprotein IIb/IIIa receptor inhibitor-thrombolytic combination therapy for acute myocardial infarction. Curr Cardiol Rep 4:313–319PubMedCrossRefGoogle Scholar
  37. 37.
    Cannon CP (2003) Oral platelet glycoprotein IIb/IIIa receptor inhibitors—part II. Clin Cardiol 26:401–406PubMedCrossRefGoogle Scholar
  38. 38.
    Rosove MH (2004) Platelet glycoprotein IIb/IIIa inhibitors. Best Pract Res Clin Haematol 17:65–76PubMedCrossRefGoogle Scholar
  39. 39.
    Said SM et al (2007) Glycoprotein IIb/IIIa inhibitor-induced thrombocytopenia: diagnosis and treatment. Clin Res Cardiol 96:61–69PubMedCrossRefGoogle Scholar
  40. 40.
    Maeshima Y et al (2002) Tumstatin an endothelial cell-specific inhibitor of protein synthesis. Science 295:140–143PubMedCrossRefGoogle Scholar
  41. 41.
    Sudhakar A et al (2003) Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc Natl Acad Sci USA 100:4766–4771PubMedCrossRefGoogle Scholar
  42. 42.
    Mould AP et al (1998) Regulation of integrin function: evidence that bivalent-cation-induced conformational changes lead to the unmasking of ligand-binding sites within integrin alpha5 beta1. Biochem J 331((Pt 3)):821–828PubMedGoogle Scholar
  43. 43.
    Humphries MJ (2004) Monoclonal antibodies as probes of integrin priming and activation. Biochem Soc Trans 32:407–411PubMedCrossRefGoogle Scholar
  44. 44.
    De S et al (2003) Molecular pathway for cancer metastasis to bone. J Biol Chem 278:39044–39050PubMedCrossRefGoogle Scholar
  45. 45.
    Mahabeleshwar GH et al (2007) Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis. Circ Res 101:570–580PubMedCrossRefGoogle Scholar
  46. 46.
    Borges E et al (2000) Platelet-derived growth factor receptor beta and vascular endothelial growth factor receptor 2 bind to the beta 3 integrin through its extracellular domain. J Biol Chem 275:39867–39873PubMedCrossRefGoogle Scholar
  47. 47.
    Soldi R et al (1999) Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. EMBO J 18:882–892PubMedCrossRefGoogle Scholar
  48. 48.
    Schneller M et al (1997) Alphavbeta3 integrin associates with activated insulin and PDGFbeta receptors and potentiates the biological activity of PDGF. EMBO J 16:5600–5607PubMedCrossRefGoogle Scholar
  49. 49.
    Vuori K, Ruoslahti E (1994) Association of insulin receptor substrate-1 with integrins. Science 266:1576–1578PubMedCrossRefGoogle Scholar
  50. 50.
    Doerr ME, Jones JI (1996) The roles of integrins and extracellular matrix proteins in the insulin-like growth factor I-stimulated chemotaxis of human breast cancer cells. J Biol Chem 271:2443–2447PubMedCrossRefGoogle Scholar
  51. 51.
    Falcioni R et al (1997) Alpha 6 beta 4 and alpha 6 beta 1 integrins associate with ErbB-2 in human carcinoma cell lines. Exp Cell Res 236:76–85PubMedCrossRefGoogle Scholar
  52. 52.
    Folgiero V et al (2008) Induction of ErbB-3 expression by alpha6beta4 integrin contributes to tamoxifen resistance in ERbeta1-negative breast carcinomas. PLoS ONE 3:e1592PubMedCrossRefGoogle Scholar
  53. 53.
    Wang JF et al (2001) Stimulation of beta 1 integrin induces tyrosine phosphorylation of vascular endothelial growth factor receptor-3 and modulates cell migration. J Biol Chem 276:41950–41957PubMedCrossRefGoogle Scholar
  54. 54.
    Napione L et al (2007) Integrins: a flexible platform for endothelial vascular tyrosine kinase receptors. Autoimmun Rev 7:18–22PubMedCrossRefGoogle Scholar
  55. 55.
    Mahabeleshwar GH et al (2008) Integrin affinity modulation in angiogenesis. Cell Cycle 7:335–347PubMedGoogle Scholar
  56. 56.
    Masson-Gadais B et al (2004) Integrin alphavbeta3 requirement for VEGFR2-mediated activation of SAPK2/p38 and for Hsp90-dependent phosphorylation of focal adhesion kinase in endothelial cells activated by VEGF. Cell Stress Chaperones 8:37–52CrossRefGoogle Scholar
  57. 57.
    Pampori N et al (1999) Mechanisms and consequences of affinity modulation of integrin alpha(V)beta(3) detected with a novel patch-engineered monovalent ligand. J Biol Chem 274:21609–21616PubMedCrossRefGoogle Scholar
  58. 58.
    Byzova TV et al (2002) Adenovirus encoding vascular endothelial growth factor-D induces tissue-specific vascular patterns in vivo. Blood 99:4434–4442PubMedCrossRefGoogle Scholar
  59. 59.
    Ginsberg MH et al (2005) Integrin regulation. Curr Opin Cell Biol 17:509–516PubMedCrossRefGoogle Scholar
  60. 60.
    Cheresh DA, Stupack DG (2008) Regulation of angiogenesis: apoptotic cues from the ECM. Oncogene 27:6285–6298PubMedCrossRefGoogle Scholar
  61. 61.
    Arnaout MA et al (2007) Structure and mechanics of integrin-based cell adhesion. Curr Opin Cell Biol 19:495–507PubMedCrossRefGoogle Scholar
  62. 62.
    Phillips DR et al (2001) Integrin tyrosine phosphorylation in platelet signaling. Curr Opin Cell Biol 13:546–554PubMedCrossRefGoogle Scholar
  63. 63.
    Chandhoke SK et al (2004) Beta 3 integrin phosphorylation is essential for Arp3 organization into leukocyte alpha V beta 3-vitronectin adhesion contacts. J Cell Sci 117:1431–1441PubMedCrossRefGoogle Scholar
  64. 64.
    Butler B et al (2003) Lig, -dependent activation of integrin alpha vbeta 3. J Biol Chem 278:5264–5270PubMedCrossRefGoogle Scholar
  65. 65.
    Feng W (2008) The angiogenic response is dictated by beta3 integrin on bone marrow-derived cells. J Cell Biol 183:1145–1157PubMedCrossRefGoogle Scholar
  66. 66.
    Johnson FM, Gallick GE (2007) SRC family nonreceptor tyrosine kinases as molecular targets for cancer therapy. Anticancer Agents Med Chem 7:651–659PubMedCrossRefGoogle Scholar
  67. 67.
    Kefalas P et al (1995) Signalling by the p60c-src family of protein-tyrosine kinases. Int J Biochem Cell Biol 27:551–563PubMedCrossRefGoogle Scholar
  68. 68.
    Basson MD (2008) An intracellular signal pathway that regulates cancer cell adhesion in response to extracellular forces. Cancer Res 68:2–4PubMedCrossRefGoogle Scholar
  69. 69.
    Coluccia AM et al (2008) Validation of PDGFRbeta and c-Src tyrosine kinases as tumor/vessel targets in patients with multiple myeloma: preclinical efficacy of the novel, orally available inhibitor dasatinib. Blood 112:1346–1356PubMedCrossRefGoogle Scholar
  70. 70.
    Eliceiri BP et al (1999) Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 4:915–924PubMedCrossRefGoogle Scholar
  71. 71.
    Schwartzberg PL et al (1997) Rescue of osteoclast function by transgenic expression of kinase-deficient Src in src-/- mutant mice. Genes Dev 11:2835–2844PubMedCrossRefGoogle Scholar
  72. 72.
    Lowell CA et al (1996) Deficiency of the Hck and Src tyrosine kinases results in extreme levels of extramedullary hematopoiesis. Blood 87:1780–1792PubMedGoogle Scholar
  73. 73.
    McHugh KP et al (2000) Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest 105:433–440PubMedCrossRefGoogle Scholar
  74. 74.
    Soriano P et al (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64:693–702PubMedCrossRefGoogle Scholar
  75. 75.
    Klinghoffer RA et al (1999) Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J 18:2459–2471PubMedCrossRefGoogle Scholar
  76. 76.
    Su X, Mi J et al (2008) RGT, a synthetic peptide corresponding to the integrin beta 3 cytoplasmic C-terminal sequence, selectively inhibits outside-in signaling in human platelets by disrupting the interaction of integrin alpha IIb beta 3 with Src kinase. Blood 112:592–602PubMedCrossRefGoogle Scholar
  77. 77.
    Stockmann C et al (2008) Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 456:814–818PubMedCrossRefGoogle Scholar
  78. 78.
    Jones PL et al (1997) Regulation of tenascin-C, a vascular smooth muscle cell survival factor that interacts with the alpha v beta 3 integrin to promote epidermal growth factor receptor phosphorylation and growth. J Cell Biol 139:279–293PubMedCrossRefGoogle Scholar
  79. 79.
    Woodard AS et al (1998) The synergistic activity of alphavbeta3 integrin and PDGF receptor increases cell migration. J Cell Sci 111(Pt 4):469–478PubMedGoogle Scholar
  80. 80.
    Trusolino L et al (1998) Growth factor-dependent activation of alphavbeta3 integrin in normal epithelial cells: implications for tumor invasion. J Cell Biol 142:1145–1156PubMedCrossRefGoogle Scholar
  81. 81.
    Rahman S et al (2005) Novel hepatocyte growth factor (HGF) binding domains on fibronectin and vitronectin coordinate a distinct and amplified Met-integrin induced signalling pathway in endothelial cells. BMC Cell Biol 6:8PubMedCrossRefGoogle Scholar
  82. 82.
    Roskoski R Jr (2008) VEGF receptor protein-tyrosine kinases: structure and regulation. Biochem Biophys Res Commun 375:287–291PubMedCrossRefGoogle Scholar
  83. 83.
    Igarashi KI et al (1998) Tyrosine 1213 of Flt-1 is a major binding site of Nck and SHP-2. Biochem Biophys Res Commun 246:95–99PubMedCrossRefGoogle Scholar
  84. 84.
    Le Boeuf F et al (2004) Regulation of vascular endothelial growth factor receptor 2-mediated phosphorylation of focal adhesion kinase by heat shock protein 90 and Src kinase activities. J Biol Chem 279:39175–39185PubMedCrossRefGoogle Scholar
  85. 85.
    Laramee M et al (2007) The scaffolding adapter Gab1 mediates vascular endothelial growth factor signaling and is required for endothelial cell migration and capillary formation. J Biol Chem 282:7758–7769PubMedCrossRefGoogle Scholar
  86. 86.
    Graells J et al (2004) Overproduction of VEGF concomitantly expressed with its receptors promotes growth and survival of melanoma cells through MAPK and PI3K signaling. J Invest Dermatol 123:1151–1161PubMedCrossRefGoogle Scholar
  87. 87.
    Dardik R et al (2005) Molecular mechanisms underlying the proangiogenic effect of factor XIII. Arterioscler Thromb Vasc Biol 25:526–532PubMedCrossRefGoogle Scholar
  88. 88.
    Dardik R et al (2006) Evaluation of the pro-angiogenic effect of factor XIII in heterotopic mouse heart allografts and FXIII-deficient mice. Thromb Haemost 95:546–550PubMedGoogle Scholar
  89. 89.
    Dardik R, Inbal A (2006) Complex formation between tissue transglutaminase II (tTG) and vascular endothelial growth factor receptor 2 (VEGFR-2): proposed mechanism for modulation of endothelial cell response to VEGF. Exp Cell Res 312:2973–2982PubMedCrossRefGoogle Scholar
  90. 90.
    Lee SC et al (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130:691–703PubMedCrossRefGoogle Scholar
  91. 91.
    Chen J et al (2005) Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nat Med 11:1188–1196PubMedCrossRefGoogle Scholar
  92. 92.
    Somanath PR et al (2007) Akt1 signaling regulates integrin activation, matrix recognition, and fibronectin assembly. J Biol Chem 282:22964–22976PubMedCrossRefGoogle Scholar
  93. 93.
    Wijelath ES et al (2006) Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circ Res 99:853–860PubMedCrossRefGoogle Scholar
  94. 94.
    Vlahakis NE et al (2007) Integrin alpha9beta1 directly binds to vascular endothelial growth factor (VEGF)-A and contributes to VEGF-A-induced angiogenesis. J Biol Chem 282:15187–15196PubMedCrossRefGoogle Scholar
  95. 95.
    Becker PM et al (2005) Neuropilin-1 regulates vascular endothelial growth factor-mediated endothelial permeability. Circ Res 96:1257–1265PubMedCrossRefGoogle Scholar
  96. 96.
    Pan Q et al (2007) Neuropilin-1 binds to VEGF121 and regulates endothelial cell migration and sprouting. J Biol Chem 282:24049–24056PubMedCrossRefGoogle Scholar
  97. 97.
    Pellet-Many C et al (2008) Neuropilins: structure, function and role in disease. Biochem J 411:211–226PubMedCrossRefGoogle Scholar
  98. 98.
    Qu CK (2002) Role of the SHP-2 tyrosine phosphatase in cytokine-induced signaling and cellular response. Biochim Biophys Acta 1592:297–301PubMedCrossRefGoogle Scholar
  99. 99.
    Maile LA, Clemmons DR (2002) Regulation of insulin-like growth factor I receptor dephosphorylation by SHPS-1 and the tyrosine phosphatase SHP-2. J Biol Chem 277:8955–8960PubMedCrossRefGoogle Scholar
  100. 100.
    Ling Y et al (2003) Tyrosine phosphorylation of the beta3-subunit of the alphaVbeta3 integrin is required for membrane association of the tyrosine phosphatase SHP-2 and its further recruitment to the insulin-like growth factor I receptor. Mol Endocrinol 17:1824–1833PubMedCrossRefGoogle Scholar
  101. 101.
    Ling Y et al (2005) DOK1 mediates SHP-2 binding to the alphaVbeta3 integrin and thereby regulates insulin-like growth factor I signaling in cultured vascular smooth muscle cells. J Biol Chem 280:3151–3158PubMedCrossRefGoogle Scholar
  102. 102.
    Ling Y et al (2005) Role of SHPS-1 in the regulation of insulin-like growth factor I-stimulated Shc and mitogen-activated protein kinase activation in vascular smooth muscle cells. Mol Biol Cell 16:3353–3364PubMedCrossRefGoogle Scholar
  103. 103.
    Clemmons DR et al (2007) Role of the integrin alphaVbeta3 in mediating increased smooth muscle cell responsiveness to IGF-I in response to hyperglycemic stress. Growth Horm IGF Res 17:265–270PubMedCrossRefGoogle Scholar
  104. 104.
    Kwon M et al (2006) Recruitment of the tyrosine phosphatase Src homology 2 domain tyrosine phosphatase-2 to the p85 subunit of phosphatidylinositol-3 (PI-3) kinase is required for insulin-like growth factor-I-dependent PI-3 kinase activation in smooth muscle cells. Endocrinology 147:1458–1465PubMedCrossRefGoogle Scholar
  105. 105.
    Edderkaoui M et al (2007) Insulin-like growth factor-I receptor mediates the prosurvival effect of fibronectin. J Biol Chem 282:26646–26655PubMedCrossRefGoogle Scholar
  106. 106.
    Mitola S et al (2006) Type I collagen limits VEGFR-2 signaling by a SHP2 protein-tyrosine phosphatase-dependent mechanism 1. Circ Res 98:45–54PubMedCrossRefGoogle Scholar
  107. 107.
    Lieskovska J et al (2006) The role of Src kinase in insulin-like growth factor-dependent mitogenic signaling in vascular smooth muscle cells. J Biol Chem 281:25041–25053PubMedCrossRefGoogle Scholar
  108. 108.
    Chabot C et al (2009) New role for the protein tyrosine phosphatase DEP-1 in Akt activation and endothelial cell survival. Mol Cell Biol 29:241–253PubMedCrossRefGoogle Scholar
  109. 109.
    Mattila E et al (2008) The protein tyrosine phosphatase TCPTP controls VEGFR2 signalling. J Cell Sci 121:3570–3580PubMedCrossRefGoogle Scholar
  110. 110.
    Yamaoka-Tojo M et al (2006) IQGAP1 mediates VE-cadherin-based cell–cell contacts and VEGF signaling at adherence junctions linked to angiogenesis. Arterioscler Thromb Vasc Biol 26:1991–1997PubMedCrossRefGoogle Scholar
  111. 111.
    Tzima E et al (2005) VE-cadherin links tRNA synthetase cytokine to anti-angiogenic function. J Biol Chem 280:2405–2408PubMedCrossRefGoogle Scholar
  112. 112.
    Ukropec JA et al (2002) Regulation of VE-cadherin linkage to the cytoskeleton in endothelial cells exposed to fluid shear stress. Exp Cell Res 273:240–247PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Payaningal R. Somanath
    • 1
  • Nikolay L. Malinin
    • 1
  • Tatiana V. Byzova
    • 1
  1. 1.Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, NB50, Lerner Research InstituteThe Cleveland ClinicClevelandUSA

Personalised recommendations