Angiogenesis

, Volume 12, Issue 1, pp 91–100 | Cite as

Cell surface nucleolin antagonist causes endothelial cell apoptosis and normalization of tumor vasculature

  • Valentina Fogal
  • Kazuki N. Sugahara
  • Erkki Ruoslahti
  • Sven Christian
Original Paper

Abstract

Nucleolin is specifically transported to the surface of proliferating endothelial cells in vitro and in vivo. In contrast to its well defined functions in the nucleus and cytoplasm, the function of cell surface nucleolin is poorly defined. We have previously identified the nucleolin-binding antibody NCL3 that specifically binds to cell surface nucleolin on angiogenic blood vessels in vivo and is internalized into the cell. Here, we show that NCL3 inhibits endothelial tube formation in vitro as well as angiogenesis in the matrigel plaque assay and subcutaneous tumor models in vivo. Intriguingly, the specific targeting of proliferating endothelial cells by NCL3 in subcutaneous tumor models leads to the normalization of the tumor vasculature and as a result to an increase in tumor oxygenation. Treatment of endothelial cells with anti-nucleolin antibody NCL3 leads to a decrease of mRNA levels of the anti-apoptotic molecule Bcl-2 and as a consequence induces endothelial cell apoptosis as evidenced by PARP cleavage. These data reveal a novel mode of action for anti-angiogenic therapy and identify cell surface nucleolin as a novel target for combinatorial chemotherapy.

Keywords

Angiogenesis Bcl-2 Homing peptides Tumor targeting 

References

  1. 1.
    Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364. doi:10.1016/S0092-8674(00)80108-7 PubMedCrossRefGoogle Scholar
  2. 2.
    Ruoslahti E (2002) Specialization of tumour vasculature. Nat Rev Cancer 2(2):83–90. doi:10.1038/nrc724 PubMedCrossRefGoogle Scholar
  3. 3.
    St Croix B, Rago C, Velculescu V et al (2000) Genes expressed in human tumor endothelium. Science 289(5482):1197–1202. doi:10.1126/science.289.5482.1197 PubMedCrossRefGoogle Scholar
  4. 4.
    Fukumura D, Jain RK (2007) Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 74(2–3):72–84. doi:10.1016/j.mvr.2007.05.003 PubMedCrossRefGoogle Scholar
  5. 5.
    Ferrara N, Hillan KJ, Gerber HP et al (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3(5):391–400. doi:10.1038/nrd1381 PubMedCrossRefGoogle Scholar
  6. 6.
    Christian S, Pilch J, Akerman ME et al (2003) Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell Biol 163(4):871–878. doi:10.1083/jcb.200304132 PubMedCrossRefGoogle Scholar
  7. 7.
    Huang Y, Shi H, Zhou H et al (2006) The angiogenic function of nucleolin is mediated by vascular endothelial growth factor and nonmuscle myosin. Blood 107(9):3564–3571. doi:10.1182/blood-2005-07-2961 PubMedCrossRefGoogle Scholar
  8. 8.
    Destouches D, El Khoury D, Hamma-Kourbali Y et al (2008) Suppression of tumor growth and angiogenesis by a specific antagonist of the cell-surface expressed nucleolin. PLoS ONE 3(6):e2518. doi:10.1371/journal.pone.0002518 PubMedCrossRefGoogle Scholar
  9. 9.
    Ginisty H, Sicard H, Roger B et al (1999) Structure and functions of nucleolin. J Cell Sci 112(Pt 6):761–772PubMedGoogle Scholar
  10. 10.
    Srivastava M, Pollard HB (1999) Molecular dissection of nucleolin’s role in growth and cell proliferation: new insights. FASEB J 13(14):1911–1922PubMedGoogle Scholar
  11. 11.
    Borer RA, Lehner CF, Eppenberger HM et al (1989) Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56(3):379–390. doi:10.1016/0092-8674(89)90241-9 PubMedCrossRefGoogle Scholar
  12. 12.
    Yu D, Schwartz MZ, Petryshyn R (1998) Effect of laminin on the nuclear localization of nucleolin in rat intestinal epithelial IEC-6 cells. Biochem Biophys Res Commun 247(1):186–192. doi:10.1006/bbrc.1998.8754 PubMedCrossRefGoogle Scholar
  13. 13.
    Harms G, Kraft R, Grelle G et al (2001) Identification of nucleolin as a new L-selectin ligand. Biochem J 360(Pt 3):531–538. doi:10.1042/0264-6021:3600531 PubMedCrossRefGoogle Scholar
  14. 14.
    Said EA, Krust B, Nisole S et al (2002) The anti-HIV cytokine midkine binds the cell surface-expressed nucleolin as a low affinity receptor. J Biol Chem 277(40):37492–37502. doi:10.1074/jbc.M201194200 PubMedCrossRefGoogle Scholar
  15. 15.
    Sinclair JF, O’Brien AD (2002) Cell surface-localized nucleolin is a eukaryotic receptor for the adhesin intimin-gamma of enterohemorrhagic Escherichia coli O157:H7. J Biol Chem 277(4):2876–2885. doi:10.1074/jbc.M110230200 PubMedCrossRefGoogle Scholar
  16. 16.
    Fahling M, Steege A, Perlewitz A et al (2005) Role of nucleolin in posttranscriptional control of MMP-9 expression. Biochim Biophys Acta 1731(1):32–40PubMedGoogle Scholar
  17. 17.
    Otake Y, Soundararajan S, Sengupta TK et al (2007) Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA. Blood 109(7):3069–3075PubMedGoogle Scholar
  18. 18.
    Soundararajan S, Chen W, Spicer EK et al (2008) The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res 68(7):2358–2365. doi:10.1158/0008-5472.CAN-07-5723 PubMedCrossRefGoogle Scholar
  19. 19.
    Shi H, Huang Y, Zhou H et al (2007) Nucleolin is a receptor that mediates antiangiogenic and antitumor activity of endostatin. Blood 110(8):2899–2906. doi:10.1182/blood-2007-01-064428 PubMedCrossRefGoogle Scholar
  20. 20.
    Fulgham DL, Widhalm SR, Martin S et al (1999) FGF-2 dependent angiogenesis is a latent phenotype in basic fibroblast growth factor transgenic mice. Endothelium 6(3):185–195. doi:10.3109/10623329909053409 PubMedCrossRefGoogle Scholar
  21. 21.
    Ngo CV, Gee M, Akhtar N et al (2000) An in vivo function for the transforming Myc protein: elicitation of the angiogenic phenotype. Cell Growth Differ 11(4):201–210PubMedGoogle Scholar
  22. 22.
    Zhang J, Tsaprailis G, Bowden GT (2008) Nucleolin stabilizes Bcl-X L messenger RNA in response to UVA irradiation. Cancer Res 68(4):1046–1054. doi:10.1158/0008-5472.CAN-07-1927 PubMedCrossRefGoogle Scholar
  23. 23.
    Morikawa S, Baluk P, Kaidoh T et al (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160(3):985–1000PubMedGoogle Scholar
  24. 24.
    Dhanabal M, Ramchandran R, Waterman MJ et al (1999) Endostatin induces endothelial cell apoptosis. J Biol Chem 274(17):11721–11726. doi:10.1074/jbc.274.17.11721 PubMedCrossRefGoogle Scholar
  25. 25.
    Abdollahi A, Hahnfeldt P, Maercker C et al (2004) Endostatin’s antiangiogenic signaling network. Mol Cell 13(5):649–663. doi:10.1016/S1097-2765(04)00102-9 PubMedCrossRefGoogle Scholar
  26. 26.
    Jain RK (2005) Antiangiogenic therapy for cancer: current and emerging concepts. Oncology 19(4, Suppl 3):7–16 Williston ParkPubMedGoogle Scholar
  27. 27.
    Dickson PV, Hamner JB, Sims TL et al (2007) Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin Cancer Res 13(13):3942–3950. doi:10.1158/1078-0432.CCR-07-0278 PubMedCrossRefGoogle Scholar
  28. 28.
    Hamzah J, Jugold M, Kiessling F et al (2008) Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature 453(7193):410–414. doi:10.1038/nature06868 PubMedCrossRefGoogle Scholar
  29. 29.
    Winkler F, Kozin SV, Tong RT et al (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6(6):553–563PubMedGoogle Scholar
  30. 30.
    Jain RK (2008) Lessons from multidisciplinary translational trials on anti-angiogenic therapy of cancer. Nat Rev Cancer 8(4):309–316. doi:10.1038/nrc2346 PubMedCrossRefGoogle Scholar
  31. 31.
    Herbst RS, O’Neill VJ, Fehrenbacher L et al (2007) Phase II study of efficacy and safety of bevacizumab in combination with chemotherapy or erlotinib compared with chemotherapy alone for treatment of recurrent or refractory non small-cell lung cancer. J Clin Oncol 25(30):4743–4750. doi:10.1200/JCO.2007.12.3026 PubMedCrossRefGoogle Scholar
  32. 32.
    Sandler A, Gray R, Perry MC et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355(24):2542–2550. doi:10.1056/NEJMoa061884 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Valentina Fogal
    • 1
  • Kazuki N. Sugahara
    • 2
  • Erkki Ruoslahti
    • 1
    • 2
  • Sven Christian
    • 1
    • 3
  1. 1.Cancer Research CenterBurnham Institute for Medical ResearchLa JollaUSA
  2. 2.Vascular Mapping Center, Burnham Institute for Medical Research at UCSBUniversity of CaliforniaSanta BarbaraUSA
  3. 3.BHC-BSP GDD-GTR-TD Target ResearchWuppertalGermany

Personalised recommendations