, Volume 12, Issue 1, pp 25–33 | Cite as

Tyrosine phosphatase beta regulates angiopoietin-Tie2 signaling in human endothelial cells

  • Orisha K. Yacyshyn
  • Patrick F. H. Lai
  • Kelly Forse
  • Krystyna Teichert-Kuliszewska
  • Paul Jurasz
  • Duncan J. Stewart
Original Paper



The endothelial cell (EC)-selective receptor tyrosine kinase, Tie2, and its ligands angiopoietin Ang-1 and Ang-2, are essential for blood vessel maintenance and repair. Ang-1 is an agonist of Tie2 receptor activation, whereas Ang-2 is a context-dependent antagonist/agonist. Therefore, we investigated the role of the EC-selective phosphatase, human protein tyrosine phosphatase beta (HPTPβ), in regulating Tie2 activity.

Methods and results

siRNA silencing of HPTPβ enhanced Ang-1 and Ang-2-induced Tie2 phosphorylation at 10 min (2.5-fold, < 0.001; and 1.8-fold, < 0.05, respectively). The cell survival response to Ang-1, but not Ang-2, was enhanced by HPTPβ silencing as measured by flow cytometry (0.85-fold to 0.66-fold, < 0.05) and ELISA (0.88-fold to 0.53-fold, < 0.01). Hypoxia, which upregulated HPTPβ expression in endothelial cells, impaired Ang-1-induced Tie2 phosphorylation.


These results reveal a novel role for HPTPβ in modulating Ang-1-Tie2 signaling and endothelial cell survival.


Angiogenesis Angiopoietins Apoptosis Endothelial Tie2 receptor Protein tyrosine phosphatase Hypoxia 



This study was supported by a grant from the Canadian Institutes of Health Research (82791), a fellowship from the Heart and Stroke Foundation of Canada to P.J., and a Government of Ontario/Heart and Stroke Foundation of Ontario Graduate Scholarship in Science and Technology to O.K.Y.


  1. 1.
    Dumont DJ, Gradwohl G, Fong GH, Puri MC, Gertsenstein M, Auerbach A, Breitman ML (1994) Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8:1897–1909. doi: 10.1101/gad.8.16.1897 PubMedCrossRefGoogle Scholar
  2. 2.
    Kim I, Kim HG, So JN, Kim JH, Kwak HJ, Koh GY (2000) Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Circ Res 86:24–29PubMedGoogle Scholar
  3. 3.
    Jones N, Voskas D, Master Z, Sarao R, Jones J, Dumont DJ (2001) Rescue of the early vascular defects in Tek/Tie2 null mice reveals an essential survival function. EMBO Rep 2:438–445PubMedGoogle Scholar
  4. 4.
    Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, McDonald DM (1999) Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286:2511–2514. doi: 10.1126/science.286.5449.2511 PubMedCrossRefGoogle Scholar
  5. 5.
    Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60. doi: 10.1126/science.277.5322.55 PubMedCrossRefGoogle Scholar
  6. 6.
    Teichert-Kuliszewska K, Maisonpierre PC, Jones N, Campbell AI, Master Z, Bendeck MP, Alitalo K, Dumont DJ, Yancopoulos GD, Stewart DJ (2001) Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2. Cardiovasc Res 49:659–670. doi: 10.1016/S0008-6363(00)00231-5 PubMedCrossRefGoogle Scholar
  7. 7.
    Harfouche R, Hussain SN (2006) Signaling and regulation of endothelial cell survival by angiopoietin-2. Am J Physiol Heart Circ Physiol 291:H1635–H1645. doi: 10.1152/ajpheart.01318.2005 PubMedCrossRefGoogle Scholar
  8. 8.
    Kim I, Kim JH, Moon SO, Kwak HJ, Kim NG, Koh GY (2000) Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. Oncogene 19:4549–4552. doi: 10.1038/sj.onc.1203800 PubMedCrossRefGoogle Scholar
  9. 9.
    Gill KA, Brindle NP (2005) Angiopoietin-2 stimulates migration of endothelial progenitors and their interaction with endothelium. Biochem Biophys Res Commun 336:392–396. doi: 10.1016/j.bbrc.2005.08.097 PubMedCrossRefGoogle Scholar
  10. 10.
    Kim KL, Shin IS, Kim JM, Choi JH, Byun J, Jeon ES, Suh W, Kim DK (2006) Interaction between Tie receptors modulates angiogenic activity of angiopoietin2 in endothelial progenitor cells. Cardiovasc Res 72:394–402. doi: 10.1016/j.cardiores.2006.08.002 PubMedCrossRefGoogle Scholar
  11. 11.
    Witzenbichler B, Maisonpierre PC, Jones P, Yancopoulos GD, Isner JM (1998) Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J Biol Chem 273:18514–18521. doi: 10.1074/jbc.273.29.18514 PubMedCrossRefGoogle Scholar
  12. 12.
    Baumer S, Keller L, Holtmann A, Funke R, August B, Gamp A, Wolburg H, Wolburg-Buchholz K, Deutsch U, Vestweber D (2006) Vascular endothelial cell-specific phosphotyrosine phosphatase (VE–PTP) activity is required for blood vessel development. Blood 107:4754–4762. doi: 10.1182/blood-2006-01-0141 PubMedCrossRefGoogle Scholar
  13. 13.
    Fachinger G, Deutsch U, Risau W (1999) Functional interaction of vascular endothelial-protein-tyrosine phosphatase with the angiopoietin receptor Tie-2. Oncogene 18:5948–5953. doi: 10.1038/sj.onc.1202992 PubMedCrossRefGoogle Scholar
  14. 14.
    Dominguez MG, Hughes VC, Pan L, Simmons M, Daly C, Anderson K, Noguera-Troise I, Murphy AJ, Valenzuela DM, Davis S, Thurston G, Yancopoulos GD, Gale NW (2007) Vascular endothelial tyrosine phosphatase (VE–PTP)-null mice undergo vasculogenesis but die embryonically because of defects in angiogenesis. Proc Natl Acad Sci USA 104:3243–3248. doi: 10.1073/pnas.0611510104 PubMedCrossRefGoogle Scholar
  15. 15.
    Jones N, Iljin K, Dumont DJ, Alitalo K (2001) Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nat Rev Mol Cell Biol 2:257–267. doi: 10.1038/35067005 PubMedCrossRefGoogle Scholar
  16. 16.
    Huang L, Turck CW, Rao P, Peters KG (1995) GRB2 and SH-PTP2: potentially important endothelial signaling molecules downstream of the TEK/TIE2 receptor tyrosine kinase. Oncogene 11:2097–2103PubMedGoogle Scholar
  17. 17.
    Huang L, Sankar S, Lin C, Kontos CD, Schroff AD, Cha EH, Feng SM, Li SF, Yu Z, Van Etten RL, Blanar MA, Peters KG (1999) HCPTPA, a protein tyrosine phosphatase that regulates vascular endothelial growth factor receptor-mediated signal transduction and biological activity. J Biol Chem 274:38183–38188. doi: 10.1074/jbc.274.53.38183 PubMedCrossRefGoogle Scholar
  18. 18.
    Krueger NX, Streuli M, Saito H (1990) Structural diversity and evolution of human receptor-like protein tyrosine phosphatases. EMBO J 9:3241–3252PubMedGoogle Scholar
  19. 19.
    Harder KW, Anderson LL, Duncan AM, Jirik FR (1992) The gene for receptor-like protein tyrosine phosphatase (PTPRB) is assigned to chromosome 12q15-q21. Cytogenet Cell Genet 61:269–270. doi: 10.1159/000133419 PubMedCrossRefGoogle Scholar
  20. 20.
    Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, Jansen PG, Andersen HS, Tonks NK, Moller NP (2001) Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol 21:7117–7136. doi: 10.1128/MCB.21.21.7117-7136.2001 PubMedCrossRefGoogle Scholar
  21. 21.
    Gaits F, Li RY, Ragab A, Ragab-Thomas JM, Chap H (1995) Increase in receptor-like protein tyrosine phosphatase activity and expression level on density-dependent growth arrest of endothelial cells. Biochem J 311(Pt 1):97–103PubMedGoogle Scholar
  22. 22.
    Gaits F, Li RY, Ragab A, Selves J, Ragab-Thomas JM, Chap H (1994) Implication of a protein-tyrosine-phosphatase in human lung cancer. Cell Mol Biol (Noisy -le-grand) 40:677–685Google Scholar
  23. 23.
    Kim I, Kim HG, Moon SO, Chae SW, So JN, Koh KN, Ahn BC, Koh GY (2000) Angiopoietin-1 induces endothelial cell sprouting through the activation of focal adhesion kinase and plasmin secretion. Circ Res 86(9):952–959PubMedGoogle Scholar
  24. 24.
    Harfouche R, Gratton JP, Yancopoulos GD, Noseda M, Karsan A, Hussain SN (2003) Angiopoietin-1 activates both anti- and proapoptotic mitogen-activated protein kinases. FASEB J 17:1523–1525PubMedGoogle Scholar
  25. 25.
    Kim YM, Kim KE, Koh GY, Ho YS, Lee KJ (2006) Hydrogen peroxide produced by angiopoietin-1 mediates angiogenesis. Cancer Res 66:6167–6174. doi: 10.1158/0008-5472.CAN-05-3640 PubMedCrossRefGoogle Scholar
  26. 26.
    Chen JX, Zeng H, Lawrence ML, Blackwell TS, Meyrick B (2006) Angiopoietin-1-induced angiogenesis is modulated by endothelial NADPH oxidase. Am J Physiol Heart Circ Physiol 291:H1563–H1572. doi: 10.1152/ajpheart.01081.2005 PubMedCrossRefGoogle Scholar
  27. 27.
    Nawroth R, Poell G, Ranft A, Kloep S, Samulowitz U, Fachinger G, Golding M, Shima DT, Deutsch U, Vestweber D (2002) VE–PTP and VE-cadherin ectodomains interact to facilitate regulation of phosphorylation and cell contacts. EMBO J 21(18):4885–4895. doi: 10.1093/emboj/cdf497 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Orisha K. Yacyshyn
    • 1
    • 2
  • Patrick F. H. Lai
    • 1
  • Kelly Forse
    • 3
  • Krystyna Teichert-Kuliszewska
    • 1
  • Paul Jurasz
    • 1
  • Duncan J. Stewart
    • 1
    • 4
  1. 1.Terrence Donnelly Heart Centre and Division of CardiologySt Michael’s HospitalTorontoCanada
  2. 2.Department of PhysiologyUniversity of TorontoTorontoCanada
  3. 3.Human Biology ProgramUniversity of TorontoTorontoCanada
  4. 4.Ottawa Health Research Institute, The Ottawa Hospital Civic CampusUniversity of OttawaOttawaCanada

Personalised recommendations