Angiogenesis

, Volume 11, Issue 4, pp 395–401 | Cite as

A nuclease-resistant RNA aptamer specifically inhibits angiopoietin-1-mediated Tie2 activation and function

  • Rebekah R. White
  • Julie A. Roy
  • Kristi D. Viles
  • Bruce A. Sullenger
  • Christopher D. Kontos
Brief Communication

Abstract

Tie2 is a receptor tyrosine kinase that is expressed predominantly in the endothelium and plays key roles in both physiological and pathological angiogenesis. The ligands for Tie2, the angiopoietins (Ang), perform opposing functions in vascular maintenance and angiogenesis; Ang1 regulates vascular quiescence, while Ang2 is thought to promote vascular destabilization and facilitate angiogenesis. However, the mechanisms responsible for these differences are not understood. To begin to elucidate the molecular differences between the angiopoietins, we previously developed a specific RNA aptamer inhibitor of Ang2. Here, we used the same iterative in vitro selection process, termed SELEX (Systematic Evolution of Ligands by EXponential enrichment), to screen a library of 2′-fluoro-modified ribonucleotides for Ang1-binding aptamers. After nine rounds of selection, we identified a single clone, ANG9-4, that bound with high affinity to human Ang1 (Kd 2.8 nM) but not Ang2 (Kd > 1 μM), demonstrating specificity for Ang1. ANG9-4 blocked Ang1-mediated Tie2 phosphorylation and downstream Akt activation. Moreover, ANG9-4 inhibited Ang1-induced endothelial cell survival. Together, these findings demonstrate the feasibility of developing an Ang1-inhibitory aptamer. ANG9-4 and its derivatives may provide useful tools for elucidating the biology of Ang1 and for treating certain angiogenic diseases.

Keywords

Akt Angiogenesis Angiopoietin Apoptosis Aptamer Endothelium Tie2 

References

  1. 1.
    Jones N, Iljin K, Dumont DJ et al (2001) Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nat Rev Mol Cell Biol 2:257–267. doi:10.1038/35067005 PubMedCrossRefGoogle Scholar
  2. 2.
    Dumont DJ, Gradwohl G, Fong G-H et al (1994) Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8:1897–1909. doi:10.1101/gad.8.16.1897 PubMedCrossRefGoogle Scholar
  3. 3.
    Lin P, Polverini P, Dewhirst M et al (1997) Inhibition of tumor angiogenesis using a soluble receptor establishes a role for Tie-2 in pathologic vascular growth. J Clin Invest 100:2072–2078. doi:10.1172/JCI119740 PubMedCrossRefGoogle Scholar
  4. 4.
    Sato TN, Tozawa Y, Deutsch U et al (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376:70–74. doi:10.1038/376070a0 PubMedCrossRefGoogle Scholar
  5. 5.
    Davis S, Aldrich TH, Jones PF et al (1996) Isolation of angiopoietin-1, a ligand for the Tie-2 receptor, by secretion-trap expression cloning. Cell 87:1161–1169. doi:10.1016/S0092-8674(00)81812-7 PubMedCrossRefGoogle Scholar
  6. 6.
    Maisonpierre PC, Suri C, Jones PF et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60. doi:10.1126/science.277.5322.55 PubMedCrossRefGoogle Scholar
  7. 7.
    Suri C, Jones PF, Patan S et al (1996) Requisite role of angiopoietin-1, a ligand for the Tie-2 receptor, during embryonic angiogenesis. Cell 87:1171–1180. doi:10.1016/S0092-8674(00)81813-9 PubMedCrossRefGoogle Scholar
  8. 8.
    Gale NW, Thurston G, Hackett SF et al (2002) Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 3:411–423. doi:10.1016/S1534-5807(02)00217-4 PubMedCrossRefGoogle Scholar
  9. 9.
    Kim I, Kim HG, So JN et al (2000) Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3′-Kinase/Akt signal transduction pathway. Circ Res 86:24–29PubMedGoogle Scholar
  10. 10.
    Papapetropoulos A, Fulton D, Mahboubi K et al (2000) Angiopoietin-1 inhibits endothelial cell apoptosis via the Akt/survivin pathway. J Biol Chem 275:9102–9105. doi:10.1074/jbc.275.13.9102 PubMedCrossRefGoogle Scholar
  11. 11.
    Kim I, Moon SO, Park SK et al (2001) Angiopoietin-1 reduces VEGF-stimulated leukocyte adhesion to endothelial cells by reducing ICAM-1, VCAM-1, and E-selectin expression. Circ Res 89:477–479. doi:10.1161/hh1801.097034 PubMedCrossRefGoogle Scholar
  12. 12.
    Thurston G, Suri C, Smith K et al (1999) Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286:2511–2514. doi:10.1126/science.286.5449.2511 PubMedCrossRefGoogle Scholar
  13. 13.
    Fiedler U, Reiss Y, Scharpfenecker M et al (2006) Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 12:235–239. doi:10.1038/nm1351 PubMedCrossRefGoogle Scholar
  14. 14.
    Holash J, Maisonpierre PC, Compton D et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998. doi:10.1126/science.284.5422.1994 PubMedCrossRefGoogle Scholar
  15. 15.
    Kuroda K, Sapadin A, Shoji T et al (2001) Altered expression of angiopoietins and Tie2 endothelium receptor in psoriasis. J Invest Dermatol 116:713–720. doi:10.1046/j.1523-1747.2001.01316.x PubMedCrossRefGoogle Scholar
  16. 16.
    Gravallese EM, Pettit AR, Lee R et al (2003) Angiopoietin-1 is expressed in the synovium of patients with rheumatoid arthritis and is induced by tumour necrosis factor alpha. Ann Rheum Dis 62:100–107. doi:10.1136/ard.62.2.100 PubMedCrossRefGoogle Scholar
  17. 17.
    Hackett SF, Wiegand S, Yancopoulos G et al (2002) Angiopoietin-2 plays an important role in retinal angiogenesis. J Cell Physiol 192:182–187. doi:10.1002/jcp.10128 PubMedCrossRefGoogle Scholar
  18. 18.
    Hattori K, Dias S, Heissig B et al (2001) Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 193:1005–1014. doi:10.1084/jem.193.9.1005 PubMedCrossRefGoogle Scholar
  19. 19.
    Machein MR, Knedla A, Knoth R et al (2004) Angiopoietin-1 promotes tumor angiogenesis in a rat glioma model. Am J Pathol 165:1557–1570PubMedGoogle Scholar
  20. 20.
    Shim WS, Teh M, Bapna A et al (2002) Angiopoietin 1 promotes tumor angiogenesis and tumor vessel plasticity of human cervical cancer in mice. Exp Cell Res 279:299–309. doi:10.1006/excr.2002.5597 PubMedCrossRefGoogle Scholar
  21. 21.
    Zadeh G, Reti R, Koushan K et al (2005) Regulation of the pathological vasculature of malignant astrocytomas by angiopoietin-1. Neoplasia 7:1081–1090. doi:10.1593/neo.05424 PubMedCrossRefGoogle Scholar
  22. 22.
    Ahmad SA, Liu W, Jung YD et al (2001) The effects of angiopoietin-1 and -2 on tumor growth and angiogenesis in human colon cancer. Cancer Res 61:1255–1259PubMedGoogle Scholar
  23. 23.
    Hayes AJ, Huang WQ, Yu J et al (2000) Expression and function of angiopoietin-1 in breast cancer. Br J Cancer 83:1154–1160. doi:10.1054/bjoc.2000.1437 PubMedCrossRefGoogle Scholar
  24. 24.
    Stoeltzing O, Ahmad SA, Liu W et al (2003) Angiopoietin-1 inhibits vascular permeability, angiogenesis, and growth of hepatic colon cancer tumors. Cancer Res 63:3370–3377PubMedGoogle Scholar
  25. 25.
    Yu Q, Stamenkovic I (2001) Angiopoietin-2 is implicated in the regulation of tumor angiogenesis. Am J Pathol 158:563–570PubMedGoogle Scholar
  26. 26.
    Fitzwater T, Polisky B (1996) A SELEX primer. Methods Enzymol 267:275–301. doi:10.1016/S0076-6879(96)67019-0 PubMedCrossRefGoogle Scholar
  27. 27.
    White RR, Shan S, Rusconi CP et al (2003) Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2. Proc Natl Acad Sci USA 100:5028–5033. doi:10.1073/pnas.0831159100 PubMedCrossRefGoogle Scholar
  28. 28.
    Peters KG, Coogan A, Berry D et al (1998) Expression of Tie2/TEK in breast tumour vasculature provides a new marker for evaluation of tumour angiogenesis. Br J Cancer 77:51–56PubMedGoogle Scholar
  29. 29.
    Wong I, Lohman TM (1993) A double-filter method for nitrocellulose-filter binding: application to protein-nucleic acid interactions. Proc Natl Acad Sci USA 90:5428–5432. doi:10.1073/pnas.90.12.5428 PubMedCrossRefGoogle Scholar
  30. 30.
    Yancopoulos GD, Davis S, Gale NW et al (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248. doi:10.1038/35025215 PubMedCrossRefGoogle Scholar
  31. 31.
    Sarraf-Yazdi S, Mi J, Moeller BJ et al (2008) Inhibition of in vivo tumor angiogenesis and growth via systemic delivery of an angiopoietin 2-specific RNA aptamer. J Surg Res 146:16–23. doi:10.1016/j.jss.2007.04.028 PubMedCrossRefGoogle Scholar
  32. 32.
    Oliner J, Min H, Leal J et al (2004) Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell 6:507–516. doi:10.1016/j.ccr.2004.09.030 PubMedCrossRefGoogle Scholar
  33. 33.
    Lemieux C, Maliba R, Favier J et al (2005) Angiopoietins can directly activate endothelial cells and neutrophils to promote proinflammatory responses. Blood 105:1523–1530. doi:10.1182/blood-2004-09-3531 PubMedCrossRefGoogle Scholar
  34. 34.
    Nykanen AI, Pajusola K, Krebs R et al (2006) Common protective and diverse smooth muscle cell effects of AAV-mediated angiopoietin-1 and -2 expression in rat cardiac allograft vasculopathy. Circ Res 98:1373–1380. doi:10.1161/01.RES.0000225987.52765.13 PubMedCrossRefGoogle Scholar
  35. 35.
    Shim WS, Teh M, Mack PO et al (2001) Inhibition of angiopoietin-1 expression in tumor cells by an antisense RNA approach inhibited xenograft tumor growth in immunodeficient mice. Int J Cancer 94:6–15. doi:10.1002/ijc.1428 PubMedCrossRefGoogle Scholar
  36. 36.
    Wang J, Wu KC, Zhang DX et al (2006) Antisense angiopoietin-1 inhibits tumorigenesis and angiogenesis of gastric cancer. World J Gastroenterol 12:2450–2454PubMedGoogle Scholar
  37. 37.
    Green LS, Jellinek D, Bell C et al (1995) Nuclease-resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. Chem Biol 2:683–695. doi:10.1016/1074-5521(95)90032-2 PubMedCrossRefGoogle Scholar
  38. 38.
    White RR, Sullenger BA, Rusconi CP (2000) Developing aptamers into therapeutics. J Clin Invest 106:929–934. doi:10.1172/JCI11325 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Rebekah R. White
    • 1
  • Julie A. Roy
    • 2
    • 3
  • Kristi D. Viles
    • 1
  • Bruce A. Sullenger
    • 4
  • Christopher D. Kontos
    • 2
    • 3
  1. 1.Division of General Surgery, Department of SurgeryDuke University Medical CenterDurhamUSA
  2. 2.Department of Pharmacology and Cancer BiologyDuke University Medical CenterDurhamUSA
  3. 3.Division of Cardiovascular Medicine, Department of MedicineDuke University Medical CenterDurhamUSA
  4. 4.Department of Surgery SciencesDuke University Medical CenterDurhamUSA

Personalised recommendations