, Volume 11, Issue 4, pp 361–367 | Cite as

PPARγ ligands, rosiglitazone and pioglitazone, inhibit bFGF- and VEGF-mediated angiogenesis

  • Ahmad Aljada
  • Laura O’Connor
  • Yu-Yen Fu
  • Shaker A. Mousa
Original Paper



To study the effect of peroxisome proliferator-activated receptor-gamma (PPARγ) agonists, pioglitazone and rosiglitazone, on vascular endothelial growth factor (VEGF)- and basic fibroblast growth factor (bFGF)-induced angiogenesis and on endothelial cell migration.


Chick chorioallantoic membrane (CAM) model was used to evaluate the efficacy of pioglitazone and rosiglitazone on VEGF- and bFGF-induced angiogenesis. In addition, the effect of pioglitazone and rosiglitazone on endothelial cell migration was evaluated using 8 mm pore filter to a feeder layer containing vitronectin as chemoattractant.


Pioglitazone and rosiglitazone inhibited the pro-angiogenic effects of bFGF and VEGF in the CAM model significantly (< 0.001) to the same extent. Endothelial cell migration was also inhibited by both pioglitazone and rosiglitazone (< 0.001).


These results suggest that PPARγ ligands, pioglitazone and rosiglitazone, in addition to their important regulatory role in adipogenesis and inflammation, possess anti-angiogenic properties. Thus, PPARγ ligands may be useful in the treatment of diabetic retinopathy, macular degeneration, and other ocular disorders and may lower the risk to develop cancer in diabetic patients.


Peroxisome proliferator-activated receptor-gamma agonist Pioglitazone Rosiglitazone Vascular endothelial growth factor Basic fibroblast growth factor Angiogenesis Endothelial cell migration 


  1. 1.
    Laukkanen JA, Laaksonen DE, Niskanen L, Pukkala E, Hakkarainen A, Salonen JT (2004) Metabolic syndrome and the risk of prostate cancer in Finnish men: a population-based study. Cancer Epidemiol Biomarkers Prev 13:1646–1650PubMedGoogle Scholar
  2. 2.
    Coughlin SS, Calle EE, Teras LR, Petrelli J, Thun MJ (2004) Diabetes mellitus as a predictor of cancer mortality in a large cohort of US adults. Am J Epidemiol 159:1160–1167. doi: 10.1093/aje/kwh161 PubMedCrossRefGoogle Scholar
  3. 3.
    Khaw KT, Wareham N, Bingham S, Luben R, Welch A, Day N (2004) Preliminary communication: glycated hemoglobin, diabetes, and incident colorectal cancer in men and women: a prospective analysis from the European prospective investigation into cancer-Norfolk study. Cancer Epidemiol Biomarkers Prev 13:915–919PubMedGoogle Scholar
  4. 4.
    Inoue M, Iwasaki M, Otani T, Sasazuki S, Noda M, Tsugane S (2006) Diabetes mellitus and the risk of cancer: results from a large-scale population-based cohort study in Japan. Arch Intern Med 166:1871–1877. doi: 10.1001/archinte.166.17.1871 PubMedCrossRefGoogle Scholar
  5. 5.
    Veldt BJ, Chen W, Heathcote EJ, Wedemeyer H, Reichen J, Hofmann WP et al (2008) Increased risk of hepatocellular carcinoma among patients with hepatitis C cirrhosis and diabetes mellitus. Hepatology 47:1856–1862. doi: 10.1002/hep.22251 PubMedCrossRefGoogle Scholar
  6. 6.
    Saez E, Tontonoz P, Nelson MC, Alvarez JG, Ming UT, Baird SM et al (1998) Activators of the nuclear receptor PPARgamma enhance colon polyp formation. Nat Med 4:1058–1061. doi: 10.1038/2042 PubMedCrossRefGoogle Scholar
  7. 7.
    Mueller E, Sarraf P, Tontonoz P, Evans RM, Martin KJ, Zhang M et al (1998) Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell 1:465–470. doi: 10.1016/S1097-2765(00)80047-7 PubMedCrossRefGoogle Scholar
  8. 8.
    Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM (1998) PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93:241–252. doi: 10.1016/S0092-8674(00)81575-5 PubMedCrossRefGoogle Scholar
  9. 9.
    Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 93:229–240. doi: 10.1016/S0092-8674(00)81574-3 PubMedCrossRefGoogle Scholar
  10. 10.
    Escher P, Wahli W (2000) Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Mutat Res 448:121–138. doi: 10.1016/S0027-5107(99)00231-6 PubMedGoogle Scholar
  11. 11.
    Yajima K, Hirose H, Fujita H, Seto Y, Fujita H, Ukeda K et al (2003) Combination therapy with PPARgamma and PPARalpha agonists increases glucose-stimulated insulin secretion in db/db mice. Am J Physiol Endocrinol Metab 284:E966–E971PubMedGoogle Scholar
  12. 12.
    Keshamouni VG, Arenberg DA, Reddy RC, Newstead MJ, Anthwal S, Standiford TJ (2005) PPAR-gamma activation inhibits angiogenesis by blocking ELR + CXC chemokine production in non-small cell lung cancer. Neoplasia 7:294–301. doi: 10.1593/neo.04601 PubMedCrossRefGoogle Scholar
  13. 13.
    Kolak M, Yki-Jarvinen H, Kannisto K, Tiikkainen M, Hamsten A, Eriksson P et al (2007) Effects of chronic rosiglitazone therapy on gene expression in human adipose tissue in vivo in patients with type 2 diabetes. J Clin Endocrinol Metab 92:720–724. doi: 10.1210/jc.2006-1465 PubMedCrossRefGoogle Scholar
  14. 14.
    Jha RJ (1999) Thiazolidinediones–the new insulin enhancers. Clin Exp Hypertens 21:157–166PubMedCrossRefGoogle Scholar
  15. 15.
    Lebovitz HE, Banerji MA (2001) Insulin resistance and its treatment by thiazolidinediones. Recent Prog Horm Res 56:265–294. doi: 10.1210/rp.56.1.265 PubMedCrossRefGoogle Scholar
  16. 16.
    (2000) Actos (pioglitazone HCL) provides a safe, effective alternative for patients formerly taking Rezulin. Diabetes Technol Ther 2:290–291Google Scholar
  17. 17.
    Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936. doi: 10.1038/nature04478 PubMedCrossRefGoogle Scholar
  18. 18.
    Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674. doi: 10.1038/386671a0 PubMedCrossRefGoogle Scholar
  19. 19.
    Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62. doi: 10.1126/science.1104819 PubMedCrossRefGoogle Scholar
  20. 20.
    De Luca A, Carotenuto A, Rachiglio A, Gallo M, Maiello MR, Aldinucci D et al (2008) The role of the EGFR signaling in tumor microenvironment. J Cell Physiol 214:559–567. doi: 10.1002/jcp.21260 PubMedCrossRefGoogle Scholar
  21. 21.
    Mousa SA, O’Connor LJ, Bergh JJ, Davis FB, Scanlan TS, Davis PJ (2005) The proangiogenic action of thyroid hormone analogue GC-1 is initiated at an integrin. J Cardiovasc Pharmacol 46:356–360. doi: 10.1097/01.fjc.0000175438.94906.a0 PubMedCrossRefGoogle Scholar
  22. 22.
    Colman RW, Pixley RA, Sainz IM, Song JS, Isordia-Salas I, Muhamed SN et al (2003) Inhibition of angiogenesis by antibody blocking the action of proangiogenic high-molecular-weight kininogen. J Thromb Haemost 1:164–170. doi: 10.1046/j.1538-7836.2003.00025.x PubMedCrossRefGoogle Scholar
  23. 23.
    Bozarth J, Penno M (1997) SAM: an improved method for the quantitation of cellular migration–role of avb3 integrin in endothelial and smooth muscle cell migration. Methods Cell Sci 19:179–187. doi: 10.1023/A:1009789416463 CrossRefGoogle Scholar
  24. 24.
    Lemberger T, Desvergne B, Wahli W (1996) Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Annu Rev Cell Dev Biol 12:335–363. doi: 10.1146/annurev.cellbio.12.1.335 PubMedCrossRefGoogle Scholar
  25. 25.
    Fruchart JC, Duriez P, Staels B (1999) Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr Opin Lipidol 10:245–257. doi: 10.1097/00041433-199906000-00007 PubMedCrossRefGoogle Scholar
  26. 26.
    Suchanek KM, May FJ, Robinson JA, Lee WJ, Holman NA, Monteith GR et al (2002) Peroxisome proliferator-activated receptor alpha in the human breast cancer cell lines MCF-7 and MDA-MB-231. Mol Carcinog 34:165–171. doi: 10.1002/mc.10061 PubMedCrossRefGoogle Scholar
  27. 27.
    Engel J, Rabba J, Schild D (1996) A transient, RCK4-like K+ current in cultured Xenopus olfactory bulb neurons. Pflugers Arch 432:845–852. doi: 10.1007/s004240050207 PubMedCrossRefGoogle Scholar
  28. 28.
    Xin X, Yang S, Kowalski J, Gerritsen ME (1999) Peroxisome proliferator-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem 274:9116–9121. doi: 10.1074/jbc.274.13.9116 PubMedCrossRefGoogle Scholar
  29. 29.
    Marx N, Bourcier T, Sukhova GK, Libby P, Plutzky J (1999) PPARgamma activation in human endothelial cells increases plasminogen activator inhibitor type-1 expression: PPARgamma as a potential mediator in vascular disease. Arterioscler Thromb Vasc Biol 19:546–551PubMedGoogle Scholar
  30. 30.
    Satoh H, Tsukamoto K, Hashimoto Y, Hashimoto N, Togo M, Hara M et al (1999) Thiazolidinediones suppress endothelin-1 secretion from bovine vascular endothelial cells: a new possible role of PPARgamma on vascular endothelial function. Biochem Biophys Res Commun 254:757–763. doi: 10.1006/bbrc.1998.0126 PubMedCrossRefGoogle Scholar
  31. 31.
    Panigrahy D, Huang S, Kieran MW, Kaipainen A (2005) PPARgamma as a therapeutic target for tumor angiogenesis and metastasis. Cancer Biol Ther 4:687–693PubMedCrossRefGoogle Scholar
  32. 32.
    Murata T, He S, Hangai M, Ishibashi T, Xi XP, Kim S et al (2000) Peroxisome proliferator-activated receptor-gamma ligands inhibit choroidal neovascularization. Invest Ophthalmol Vis Sci 41:2309–2317PubMedGoogle Scholar
  33. 33.
    Goetze S, Eilers F, Bungenstock A, Kintscher U, Stawowy P, Blaschke F et al (2002) PPAR activators inhibit endothelial cell migration by targeting Akt. Biochem Biophys Res Commun 293:1431–1437. doi: 10.1016/S0006-291X(02)00385-6 PubMedCrossRefGoogle Scholar
  34. 34.
    Goetze S, Bungenstock A, Czupalla C, Eilers F, Stawowy P, Kintscher U et al (2002) Leptin induces endothelial cell migration through Akt, which is inhibited by PPARgamma-ligands. Hypertension 40:748–754. doi: 10.1161/01.HYP.0000035522.63647.D3 PubMedCrossRefGoogle Scholar
  35. 35.
    Huang H, Campbell SC, Bedford DF, Nelius T, Veliceasa D, Shroff EH et al (2004) Peroxisome proliferator-activated receptor gamma ligands improve the antitumor efficacy of thrombospondin peptide ABT510. Mol Cancer Res 2:541–550PubMedGoogle Scholar
  36. 36.
    Panigrahy D, Singer S, Shen LQ, Butterfield CE, Freedman DA, Chen EJ et al (2002) PPARgamma ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J Clin Invest 110:923–932PubMedGoogle Scholar
  37. 37.
    Sierra-Honigmann MR, Nath AK, Murakami C, Garcia-Cardena G, Papapetropoulos A, Sessa WC et al (1998) Biological action of leptin as an angiogenic factor. Science 281:1683–1686. doi: 10.1126/science.281.5383.1683 PubMedCrossRefGoogle Scholar
  38. 38.
    Giannini S, Serio M, Galli A (2004) Pleiotropic effects of thiazolidinediones: taking a look beyond antidiabetic activity. J Endocrinol Invest 27:982–991PubMedGoogle Scholar
  39. 39.
    Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027. doi: 10.1200/JCO.2005.06.081 PubMedCrossRefGoogle Scholar
  40. 40.
    Fahmy RG, Dass CR, Sun LQ, Chesterman CN, Khachigian LM (2003) Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth. Nat Med 9:1026–1032. doi: 10.1038/nm905 PubMedCrossRefGoogle Scholar
  41. 41.
    Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS et al (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362:841–844. doi: 10.1038/362841a0 PubMedCrossRefGoogle Scholar
  42. 42.
    Yan W, Bentley B, Shao R (2008) Distinct angiogenic mediators are required for basic fibroblast growth factor- and vascular endothelial growth factor-induced angiogenesis: the role of cytoplasmic tyrosine kinase c-Abl in tumor angiogenesis. Mol Biol Cell 19:2278–2288. doi: 10.1091/mbc.E07-10-1068 PubMedCrossRefGoogle Scholar
  43. 43.
    Michalik L, Desvergne B, Wahli W (2004) Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat Rev Cancer 4:61–70. doi: 10.1038/nrc1254 PubMedCrossRefGoogle Scholar
  44. 44.
    Kaipainen A, Kieran MW, Huang S, Butterfield C, Bielenberg D, Mostoslavsky G (2007) PPARalpha deficiency in inflammatory cells suppresses tumor growth. PLoS ONE 2:e260. doi: 10.1371/journal.pone.0000260 PubMedCrossRefGoogle Scholar
  45. 45.
    Panigrahy D, Kaipainen A, Huang S, Butterfield CE, Barnes CM, Fannon M et al (2008) PPARalpha agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc Natl Acad Sci USA 105:985–990. doi: 10.1073/pnas.0711281105 PubMedCrossRefGoogle Scholar
  46. 46.
    Strickler HD, Wylie-Rosett J, Rohan T, Hoover DR, Smoller S, Burk RD et al (2001) The relation of type 2 diabetes and cancer. Diabetes Technol Ther 3:263–274. doi: 10.1089/152091501300209633 PubMedCrossRefGoogle Scholar
  47. 47.
    Govindarajan R, Ratnasinghe L, Simmons DL, Siegel ER, Midathada MV, Kim L et al (2007) Thiazolidinediones and the risk of lung, prostate, and colon cancer in patients with diabetes. J Clin Oncol 25:1476–1481. doi: 10.1200/JCO.2006.07.2777 PubMedCrossRefGoogle Scholar
  48. 48.
    Shen LQ, Child A, Weber GM, Folkman J, Aiello LP (2008) Rosiglitazone and delayed onset of proliferative diabetic retinopathy. Arch Ophthalmol 126:793–799. doi: 10.1001/archopht.126.6.793 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Ahmad Aljada
    • 2
  • Laura O’Connor
    • 1
  • Yu-Yen Fu
    • 2
  • Shaker A. Mousa
    • 1
  1. 1.The Pharmaceutical Research Institute (PRI), Albany College of PharmacyAlbanyUSA
  2. 2.Department of Biomedical SciencesLong Island University, C.W. Post.BrookvilleUSA

Personalised recommendations