Advertisement

Angiogenesis

, Volume 10, Issue 4, pp 243–258 | Cite as

Angiogenesis as a therapeutic target in arthritis: learning the lessons of the colorectal cancer experience

  • Tak Loon Khong
  • Helene Larsen
  • Yvonne Raatz
  • Ewa PaleologEmail author
Review Paper

Abstract

The idea of a therapeutic modality aimed at ‘starving’ a tissue of blood vessels, and consequentially of oxygen and nutrients, was born from the concept that blood vessel formation (angiogenesis) is central to the progression and maintenance of diseases which involve tissue expansion/invasion. In the first instance, solid malignancies were the target for anti-angiogenic treatments, with colorectal cancer being the first disease for which an angiogenesis inhibitor—anti-vascular endothelial growth factor antibody bevacizumab—was approved in 2004.

Our understanding of the pathogenesis of rheumatoid arthritis (RA) has lead to many parallels being drawn between this chronic inflammatory disease and solid tumours, in that both involve tissue expansion, invasion, expression of cytokines and growth factors and areas of hypoxia/hypoperfusion. As a result, angiogenesis blockade has been touted as a possible treatment for RA. The lessons learnt during the progression of eventually successful therapies such as bevacizumab should undoubtedly guide us in the future development of comparable treatments for RA.

Keywords

Angiogenesis Rheumatoid arthritis Colorectal cancer 

Notes

Acknowledgements

The Kennedy Institute of Rheumatology receives a core grant from Arthritis Research Campaign (Registered Charity No. 207711). The authors are grateful for the support of the Marie Curie Research Training Network EURO-RA, funded by the Sixth Framework Programme of the European Union (HL and YR).

Reference

  1. 1.
    Paleolog EM, Miotla JM (1998) Angiogenesis in arthritis: role in disease pathogenesis and as a potential therapeutic target. Angiogenesis 2(4):295–307PubMedGoogle Scholar
  2. 2.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186PubMedCrossRefGoogle Scholar
  3. 3.
    Folkman J, Merler E, Abernathy C, Williams G (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133(2):275–288PubMedGoogle Scholar
  4. 4.
    Lobb RR, Key ME, Alderman EM, Fett JW (1985) Partial purification and characterization of a vascular permeability factor secreted by a human colon adenocarcinoma cell line. Int J Cancer 36(4):473–478PubMedGoogle Scholar
  5. 5.
    Senger DR, Perruzzi CA, Feder J, Dvorak HF (1986) A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res 46(11):5629–5632PubMedGoogle Scholar
  6. 6.
    Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246(4935):1306–1309PubMedGoogle Scholar
  7. 7.
    Ertel AN (1989) Flexor tendon ruptures in rheumatoid arthritis. Hand Clin 5(2):177–190PubMedGoogle Scholar
  8. 8.
    Williamson SC, Feldon P (1995) Extensor tendon ruptures in rheumatoid arthritis. Hand Clin 11(3):449–459PubMedGoogle Scholar
  9. 9.
    Walsh DA (1999) Angiogenesis and arthritis. Rheumatology (Oxford) 38(2):103–112Google Scholar
  10. 10.
    Koch AE (2003) Angiogenesis as a target in rheumatoid arthritis. Ann Rheum Dis 62(Suppl 2):ii60–ii67PubMedGoogle Scholar
  11. 11.
    Schumacher HR Jr, Bautista BB, Krauser RE, Mathur AK, Gall EP (1994) Histological appearance of the synovium in early rheumatoid arthritis. Semin Arthritis Rheum 23(6 Suppl 2):3–10PubMedGoogle Scholar
  12. 12.
    FitzGerald O, Bresnihan B (1995) Synovial membrane cellularity and vascularity. Ann Rheum Dis 54(6):511–515PubMedGoogle Scholar
  13. 13.
    Hirohata S, Sakakibara J (1999) Angioneogenesis as a possible elusive triggering factor in rheumatoid arthritis. Lancet 353(9161):1331PubMedGoogle Scholar
  14. 14.
    Rooney M, Condell D, Quinlan W, Daly L, Whelan A, Feighery C et al (1988) Analysis of the histologic variation of synovitis in rheumatoid arthritis. Arthritis Rheum 31(8):956–963PubMedGoogle Scholar
  15. 15.
    Ceponis A, Konttinen YT, MacKevicius Z, Solovieva SA, Hukkanen M, Tamulaitiene M et al (1996) Aberrant vascularity and von Willebrand factor distribution in inflamed synovial membrane. J Rheumatol 23(11):1880–1886PubMedGoogle Scholar
  16. 16.
    Walsh DA, Wade M, Mapp PI, Blake DR (1998) Focally regulated endothelial proliferation and cell death in human synovium. Am J Pathol 152(3):691–702PubMedGoogle Scholar
  17. 17.
    Sivakumar B, Harry LE, Paleolog EM (2004) Modulating angiogenesis: more vs. less. Jama 292(8):972–977PubMedGoogle Scholar
  18. 18.
    Sivakumar B, Paleolog EM (2005) Immunotherapy of rheumatoid arthritis: past, present and future. Curr Opin Drug Discov Devel 8(2):169–176PubMedGoogle Scholar
  19. 19.
    Bainbridge J, Sivakumar B, Paleolog E (2006) Angiogenesis as a therapeutic target in arthritis: lessons from oncology. Curr Pharm Des 12(21):2631–2644PubMedGoogle Scholar
  20. 20.
    Taylor PC, Paleolog EM (2006) Is the vasculature a potential therapeutic target in arthritis? Curr Rheumatol Rev 2(2):151–158Google Scholar
  21. 21.
    Sano H, Engleka K, Mathern P, Hla T, Crofford LJ, Remmers EF et al (1993) Coexpression of phosphotyrosine-containing proteins, platelet-derived growth factor-B, and fibroblast growth factor-1 in situ in synovial tissues of patients with rheumatoid arthritis and Lewis rats with adjuvant or streptococcal cell wall arthritis. J Clin Invest 91(2):553–565PubMedGoogle Scholar
  22. 22.
    Sano H, Forough R, Maier JA, Case JP, Jackson A, Engleka K et al (1990) Detection of high levels of heparin binding growth factor-1 (acidic fibroblast growth factor) in inflammatory arthritic joints. J Cell Biol 110(4):1417–1426PubMedGoogle Scholar
  23. 23.
    Remmers EF, Sano H, Lafyatis R, Case JP, Kumkumian GK, Hla T et al (1991) Production of platelet derived growth factor B chain (PDGF-B/c-sis) mRNA and immunoreactive PDGF B-like polypeptide by rheumatoid synovium: coexpression with heparin binding acidic fibroblast growth factor-1. J Rheumatol 18(1):7–13PubMedGoogle Scholar
  24. 24.
    Koch AE, Halloran MM, Hosaka S, Shah MR, Haskell CJ, Baker SK et al (1996) Hepatocyte growth factor. A cytokine mediating endothelial migration in inflammatory arthritis. Arthritis Rheum 39(9):1566–1575PubMedGoogle Scholar
  25. 25.
    Feuerherm AJ, Borset M, Seidel C, Sundan A, Leistad L, Ostensen M et al (2001) Elevated levels of osteoprotegerin (OPG) and hepatocyte growth factor (HGF) in rheumatoid arthritis. Scand J Rheumatol 30(4):229–234PubMedGoogle Scholar
  26. 26.
    Yukioka K, Inaba M, Furumitsu Y, Yukioka M, Nishino T, Goto H et al (1994) Levels of hepatocyte growth factor in synovial fluid and serum of patients with rheumatoid arthritis and release of hepatocyte growth factor by rheumatoid synovial fluid cells. J Rheumatol 21(12):2184–2189PubMedGoogle Scholar
  27. 27.
    Kusada J, Otsuka T, Matsui N, Hirano T, Asai K, Kato T (1993) Immuno-reactive human epidermal growth factor (h-EGF) in rheumatoid synovial fluids. Nippon Seikeigeka Gakkai Zasshi 67(9):859–865PubMedGoogle Scholar
  28. 28.
    Farahat MN, Yanni G, Poston R, Panayi GS (1993) Cytokine expression in synovial membranes of patients with rheumatoid arthritis and osteoarthritis. Ann Rheum Dis 52(12):870–875PubMedGoogle Scholar
  29. 29.
    Scott BB, Zaratin PF, Colombo A, Hansbury MJ, Winkler JD, Jackson JR (2002) Constitutive expression of angiopoietin-1 and -2 and modulation of their expression by inflammatory cytokines in rheumatoid arthritis synovial fibroblasts. J Rheumatol 29(2):230–239PubMedGoogle Scholar
  30. 30.
    Gravallese EM, Pettit AR, Lee R, Madore R, Manning C, Tsay A et al (2003) Angiopoietin-1 is expressed in the synovium of patients with rheumatoid arthritis and is induced by tumour necrosis factor alpha. Ann Rheum Dis 62(2):100–107PubMedGoogle Scholar
  31. 31.
    DeBusk LM, Chen Y, Nishishita T, Chen J, Thomas JW, Lin PC (2003) Tie2 receptor tyrosine kinase, a major mediator of tumor necrosis factor alpha-induced angiogenesis in rheumatoid arthritis. Arthritis Rheum 48(9):2461–2471PubMedGoogle Scholar
  32. 32.
    Shahrara S, Volin MV, Connors MA, Haines GK, Koch AE (2002) Differential expression of the angiogenic Tie receptor family in arthritic and normal synovial tissue. Arthritis Res 4(3):201–208PubMedGoogle Scholar
  33. 33.
    Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. Faseb J 13(1):9–22PubMedGoogle Scholar
  34. 34.
    Koch AE, Harlow LA, Haines GK, Amento EP, Unemori EN, Wong WL et al (1994) Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis. J Immunol 152(8):4149–4156PubMedGoogle Scholar
  35. 35.
    Lee SS, Joo YS, Kim WU, Min DJ, Min JK, Park SH et al (2001) Vascular endothelial growth factor levels in the serum and synovial fluid of patients with rheumatoid arthritis. Clin Exp Rheumatol 19(3):321–324PubMedGoogle Scholar
  36. 36.
    Fava RA, Olsen NJ, Spencer-Green G, Yeo KT, Yeo TK, Berse B et al (1994) Vascular permeability factor/endothelial growth factor (VPF/VEGF): accumulation and expression in human synovial fluids and rheumatoid synovial tissue. J Exp Med 180(1):341–346PubMedGoogle Scholar
  37. 37.
    Paleolog EM, Young S, Stark AC, McCloskey RV, Feldmann M, Maini RN (1998) Modulation of angiogenic vascular endothelial growth factor by tumor necrosis factor alpha and interleukin-1 in rheumatoid arthritis. Arthritis Rheum 41(7):1258–1265PubMedGoogle Scholar
  38. 38.
    Harada M, Mitsuyama K, Yoshida H, Sakisaka S, Taniguchi E, Kawaguchi T et al (1998) Vascular endothelial growth factor in patients with rheumatoid arthritis. Scand J Rheumatol 27(5):377–380PubMedGoogle Scholar
  39. 39.
    Kikuchi K, Kubo M, Kadono T, Yazawa N, Ihn H, Tamaki K (1998) Serum concentrations of vascular endothelial growth factor in collagen diseases. Br J Dermatol 139(6):1049–1051PubMedGoogle Scholar
  40. 40.
    Sone H, Sakauchi M, Takahashi A, Suzuki H, Inoue N, Iida K et al (2001) Elevated levels of vascular endothelial growth factor in the sera of patients with rheumatoid arthritis correlation with disease activity. Life Sci 69(16):1861–1869PubMedGoogle Scholar
  41. 41.
    Pufe T, Petersen W, Tillmann B, Mentlein R (2001) The splice variants VEGF121 and VEGF189 of the angiogenic peptide vascular endothelial growth factor are expressed in osteoarthritic cartilage. Arthritis Rheum 44(5):1082–1088PubMedGoogle Scholar
  42. 42.
    Ballara SC, Taylor PC, Reusch P, Marmé D, Feldmann M, Maini RN et al (2001) Raised serum vascular endothelial growth factor levels are associated with destructive change in inflammatory arthritis. Arthritis Rheum 44(9):2055–2064PubMedGoogle Scholar
  43. 43.
    Latour F, Zabraniecki L, Dromer C, Brouchet A, Durroux R, Fournie B (2001) Does vascular endothelial growth factor in the rheumatoid synovium predict joint destruction? A clinical, radiological, and pathological study in 12 patients monitored for 10 years. Joint Bone Spine 68(6):493–498PubMedGoogle Scholar
  44. 44.
    Clavel G, Bessis N, Lemeiter D, Fardellone P, Mejjad O, Menard JF et al (2007) Angiogenesis markers (VEGF, soluble receptor of VEGF and angiopoietin-1) in very early arthritis and their association with inflammation and joint destruction. Clin Immunol 124(2):158–164PubMedGoogle Scholar
  45. 45.
    Nakahara H, Song J, Sugimoto M, Hagihara K, Kishimoto T, Yoshizaki K et al (2003) Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum 48(6):1521–1529PubMedGoogle Scholar
  46. 46.
    Klimiuk PA, Sierakowski S, Domyslawska I, Fiedorczyk M, Chwiecko J (2004) Reduction of soluble adhesion molecules (sICAM-1, sVCAM-1, and sE-selectin) and vascular endothelial growth factor levels in serum of rheumatoid arthritis patients following multiple intravenous infusions of infliximab. Arch Immunol Ther Exp (Warsz) 52(1):36–42Google Scholar
  47. 47.
    Aggarwal A, Panda S, Misra R (2004) Effect of etanercept on matrix metalloproteinases and angiogenic vascular endothelial growth factor: a time kinetic study. Ann Rheum Dis 63(7):891–892PubMedGoogle Scholar
  48. 48.
    Macias I, Garcia-Perez S, Ruiz-Tudela M, Medina F, Chozas N, Giron-Gonzalez JA (2005) Modification of pro- and antiinflammatory cytokines and vascular-related molecules by tumor necrosis factor-a blockade in patients with rheumatoid arthritis. J Rheumatol 32(11):2102–2108PubMedGoogle Scholar
  49. 49.
    Nagashima M, Wauke K, Hirano D, Ishigami S, Aono H, Takai M et al (2000) Effects of combinations of anti-rheumatic drugs on the production of vascular endothelial growth factor and basic fibroblast growth factor in cultured synoviocytes and patients with rheumatoid arthritis. Rheumatology (Oxford) 39(11):1255–1262Google Scholar
  50. 50.
    Kuryliszyn-Moskal A, Klimiuk PA, Sierakowski S, Ciolkiewicz M (2006) A study on vascular endothelial growth factor and endothelin-1 in patients with extra-articular involvement of rheumatoid arthritis. Clin Rheumatol 25(3):314–319PubMedGoogle Scholar
  51. 51.
    Ikeda M, Hosoda Y, Hirose S, Okada Y, Ikeda E (2000) Expression of vascular endothelial growth factor isoforms and their receptors Flt-1, KDR, and neuropilin-1 in synovial tissues of rheumatoid arthritis. J Pathol 191(4):426–433PubMedGoogle Scholar
  52. 52.
    Giatromanolaki A, Sivridis E, Athanassou N, Zois E, Thorpe PE, Brekken RA et al (2001) The angiogenic pathway “vascular endothelial growth factor/flk-1(KDR)-receptor” in rheumatoid arthritis and osteoarthritis. J Pathol 194(1):101–108PubMedGoogle Scholar
  53. 53.
    Lund-Olesen K (1970) Oxygen tension in synovial fluids. Arthritis Rheum 13(6):769–776PubMedGoogle Scholar
  54. 54.
    Etherington PJ, Winlove P, Taylor P, Paleolog E, Miotla JM (2002) VEGF release is associated with reduced oxygen tensions in experimental inflammatory arthritis. Clin Exp Rheumatol 20(6):799–805PubMedGoogle Scholar
  55. 55.
    Sivakumar B (2006) Hypoxia-driven angiogensis is a key feature of tendon disease in rheumatoid arthritis. Vascul Pharmacol 45(3):e123Google Scholar
  56. 56.
    Hitchon C, Wong K, Ma G, Reed J, Lyttle D, El-Gabalawy H (2002) Hypoxia-induced production of stromal cell-derived factor 1 (CXCL12) and vascular endothelial growth factor by synovial fibroblasts. Arthritis Rheum 46(10):2587–2597PubMedGoogle Scholar
  57. 57.
    Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ et al (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292(5516):468–472PubMedGoogle Scholar
  58. 58.
    Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M et al (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292(5516):464–468PubMedGoogle Scholar
  59. 59.
    Wiesener MS, Turley H, Allen WE, Willam C, Eckardt KU, Talks KL et al (1998) Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1alpha. Blood 92(7):2260–2268PubMedGoogle Scholar
  60. 60.
    Jiang BH, Semenza GL, Bauer C, Marti HH (1996) Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 271(4 Pt 1):C1172–C1180PubMedGoogle Scholar
  61. 61.
    Zhou J, Schmid T, Brune B (2003) Tumor necrosis factor-alpha causes accumulation of a ubiquitinated form of hypoxia inducible factor-1alpha through a nuclear factor-kappaB-dependent pathway. Mol Biol Cell 14(6):2216–2225PubMedGoogle Scholar
  62. 62.
    Scharte M, Han X, Bertges DJ, Fink MP, Delude RL (2003) Cytokines induce HIF-1 DNA binding and the expression of HIF-1-dependent genes in cultured rat enterocytes. Am J Physiol Gastrointest Liver Physiol 284(3):G373–G384PubMedGoogle Scholar
  63. 63.
    Hellwig-Burgel T, Rutkowski K, Metzen E, Fandrey J, Jelkmann W (1999) Interleukin-1beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood 94(5):1561–1567PubMedGoogle Scholar
  64. 64.
    Albina JE, Mastrofrancesco B, Vessella JA, Louis CA, Henry WL Jr, Reichner JS (2001) HIF-1 expression in healing wounds: HIF-1alpha induction in primary inflammatory cells by TNF-alpha. Am J Physiol Cell Physiol 281(6):C1971–C1977PubMedGoogle Scholar
  65. 65.
    Bilton RL, Booker GW (2003) The subtle side to hypoxia inducible factor (HIFalpha) regulation. Eur J Biochem 270(5):791–798PubMedGoogle Scholar
  66. 66.
    Jung Y, Isaacs JS, Lee S, Trepel J, Liu ZG, Neckers L (2003) Hypoxia-inducible factor induction by tumour necrosis factor in normoxic cells requires receptor-interacting protein-dependent nuclear factor kappa B activation. Biochem J 370(Pt 3):1011–1017PubMedGoogle Scholar
  67. 67.
    Berse B, Hunt JA, Diegel RJ, Morganelli P, Yeo K, Brown F et al (1999) Hypoxia augments cytokine (transforming growth factor-beta (TGF-beta) and IL-1)-induced vascular endothelial growth factor secretion by human synovial fibroblasts. Clin Exp Immunol 115(1):176–182PubMedGoogle Scholar
  68. 68.
    Hollander AP, Corke KP, Freemont AJ, Lewis CE (2001) Expression of hypoxia-inducible factor 1alpha by macrophages in the rheumatoid synovium: implications for targeting of therapeutic genes to the inflamed joint. Arthritis Rheum 44(7):1540–1544PubMedGoogle Scholar
  69. 69.
    Peters CL, Morris CJ, Mapp PI, Blake DR, Lewis CE, Winrow VR (2004) The transcription factors hypoxia-inducible factor 1alpha and Ets-1 colocalize in the hypoxic synovium of inflamed joints in adjuvant-induced arthritis. Arthritis Rheum 50(1):291–296PubMedGoogle Scholar
  70. 70.
    Giatromanolaki A, Sivridis E, Maltezos E, Athanassou N, Papazoglou D, Gatter KC et al (2003) Upregulated hypoxia inducible factor-1alpha and -2alpha pathway in rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 5(4):R193–R201PubMedGoogle Scholar
  71. 71.
    Richman AI, Su EY, Ho G Jr (1981) Reciprocal relationship of synovial fluid volume and oxygen tension. Arthritis Rheum 24(5):701–705PubMedGoogle Scholar
  72. 72.
    Lee YA, Kim JY, Hong SJ, Lee SH, Yoo MC, Kim KS et al (2007). Synovial proliferation differentially affects hypoxia in the joint cavities of rheumatoid arthritis and osteoarthritis patients. Clin Rheumatol, doi:  10.1007/s10067-007-0605-2
  73. 73.
    Qu Z, Huang XN, Ahmadi P, Andresevic J, Planck SR, Hart CE et al (1995) Expression of basic fibroblast growth factor in synovial tissue from patients with rheumatoid arthritis and degenerative joint disease. Lab Invest 73(3):339–346PubMedGoogle Scholar
  74. 74.
    Salvador G, Sanmarti R, Gil-Torregrosa B, Garcia-Peiro A, Rodriguez-Cros JR, Canete JD (2006) Synovial vascular patterns and angiogenic factors expression in synovial tissue and serum of patients with rheumatoid arthritis. Rheumatology (Oxford) 45(8):966–971Google Scholar
  75. 75.
    Dooley S, Herlitzka I, Hanselmann R, Ermis A, Henn W, Remberger K et al (1996) Constitutive expression of c-fos and c-jun, overexpression of ets-2, and reduced expression of metastasis suppressor gene nm23-H1 in rheumatoid arthritis. Ann Rheum Dis 55(5):298–304PubMedGoogle Scholar
  76. 76.
    Trabandt A, Aicher WK, Gay RE, Sukhatme VP, Nilson-Hamilton M, Hamilton RT et al (1990) Expression of the collagenolytic and Ras-induced cysteine proteinase cathepsin L and proliferation-associated oncogenes in synovial cells of MRL/I mice and patients with rheumatoid arthritis. Matrix 10(6):349–361PubMedGoogle Scholar
  77. 77.
    Lacey D, Sampey A, Mitchell R, Bucala R, Santos L, Leech M et al (2003) Control of fibroblast-like synoviocyte proliferation by macrophage migration inhibitory factor. Arthritis Rheum 48(1):103–109PubMedGoogle Scholar
  78. 78.
    Lee MS, Yoo SA, Cho CS, Suh PG, Kim WU, Ryu SH (2006) Serum amyloid A binding to formyl peptide receptor-like 1 induces synovial hyperplasia and angiogenesis. J Immunol 177(8):5585–5594PubMedGoogle Scholar
  79. 79.
    Kim WU, Kang SS, Yoo SA, Hong KH, Bae DG, Lee MS et al (2006) Interaction of vascular endothelial growth factor 165 with neuropilin-1 protects rheumatoid synoviocytes from apoptotic death by regulating Bcl-2 expression and Bax translocation. J Immunol 177(8):5727–5735PubMedGoogle Scholar
  80. 80.
    Miagkov AV, Kovalenko DV, Brown CE, Didsbury JR, Cogswell JP, Stimpson SA et al (1998) NF-kappaB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proc Natl Acad Sci USA 95(23):13859–13864PubMedGoogle Scholar
  81. 81.
    Schedel J, Gay RE, Kuenzler P, Seemayer C, Simmen B, Michel BA et al (2002) FLICE-inhibitory protein expression in synovial fibroblasts and at sites of cartilage and bone erosion in rheumatoid arthritis. Arthritis Rheum 46(6):1512–1518PubMedGoogle Scholar
  82. 82.
    Meinecke I, Cinski A, Baier A, Peters MA, Dankbar B, Wille A et al (2007) Modification of nuclear PML protein by SUMO-1 regulates Fas-induced apoptosis in rheumatoid arthritis synovial fibroblasts. Proc Natl Acad Sci USA 104(12):5073–5078PubMedGoogle Scholar
  83. 83.
    Seemayer CA, Kuchen S, Kuenzler P, Rihoskova V, Rethage J, Aicher WK et al (2003) Cartilage destruction mediated by synovial fibroblasts does not depend on proliferation in rheumatoid arthritis. Am J Pathol 162(5):1549–1557PubMedGoogle Scholar
  84. 84.
    Mohr W, Beneke G, Mohing W (1975) Proliferation of synovial lining cells and fibroblasts. Ann Rheum Dis 34(3):219–224PubMedGoogle Scholar
  85. 85.
    Baier A, Meineckel I, Gay S, Pap T (2003) Apoptosis in rheumatoid arthritis. Curr Opin Rheumatol 15(3):274–279PubMedGoogle Scholar
  86. 86.
    Ho QT, Kuo CJ (2007) Vascular endothelial growth factor: biology and therapeutic applications. Int J Biochem Cell Biol 39(7–8):1349–1357PubMedGoogle Scholar
  87. 87.
    Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967PubMedGoogle Scholar
  88. 88.
    Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85(3):221–228PubMedGoogle Scholar
  89. 89.
    Asahara T, Takahashi T, Masuda H, Kalka C, Chen D, Iwaguro H et al (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. Embo J 18(14):3964–3972PubMedGoogle Scholar
  90. 90.
    Murayama T, Tepper OM, Silver M, Ma H, Losordo DW, Isner JM et al (2002) Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol 30(8):967–972PubMedGoogle Scholar
  91. 91.
    Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, Tateno M et al (2001) Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 193(9):1005–1014PubMedGoogle Scholar
  92. 92.
    Ruger B, Giurea A, Wanivenhaus AH, Zehetgruber H, Hollemann D, Yanagida G et al (2004) Endothelial precursor cells in the synovial tissue of patients with rheumatoid arthritis and osteoarthritis. Arthritis Rheum 50(7):2157–2166PubMedGoogle Scholar
  93. 93.
    Grisar J, Aletaha D, Steiner CW, Kapral T, Steiner S, Seidinger D et al (2005) Depletion of endothelial progenitor cells in the peripheral blood of patients with rheumatoid arthritis. Circulation 111(2):204–211PubMedGoogle Scholar
  94. 94.
    Herbrig K, Haensel S, Oelschlaegel U, Pistrosch F, Foerster S, Passauer J (2005) Endothelial dysfunction in patients with rheumatoid arthritis is associated with a reduced number and impaired function of endothelial progenitor cells. Ann Rheum Dis 65(2):157–163PubMedGoogle Scholar
  95. 95.
    Hirohata S, Yanagida T, Nampei A, Kunugiza Y, Hashimoto H, Tomita T et al (2004) Enhanced generation of endothelial cells from CD34+ cells of the bone marrow in rheumatoid arthritis: possible role in synovial neovascularization. Arthritis Rheum 50(12):3888–3896PubMedGoogle Scholar
  96. 96.
    Ablin JN, Boguslavski V, Aloush V, Elkayam O, Paran D, Caspi D et al (2006) Effect of anti-TNFalpha treatment on circulating endothelial progenitor cells (EPCs) in rheumatoid arthritis. Life Sci 79(25):2364–2369PubMedGoogle Scholar
  97. 97.
    Van Doornum S, McColl G, Wicks IP (2002) Accelerated atherosclerosis: an extraarticular feature of rheumatoid arthritis? Arthritis Rheum 46(4):862–873PubMedGoogle Scholar
  98. 98.
    Van Doornum S, Brand C, King B, Sundararajan V (2006) Increased case fatality rates following a first acute cardiovascular event in patients with rheumatoid arthritis. Arthritis Rheum 54(7):2061–2068PubMedGoogle Scholar
  99. 99.
    Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H et al (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89(1):E1–E7PubMedGoogle Scholar
  100. 100.
    Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA et al (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348(7):593–600PubMedGoogle Scholar
  101. 101.
    Schmidt-Lucke C, Rossig L, Fichtlscherer S, Vasa M, Britten M, Kamper U et al (2005) Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 111(22):2981–2987PubMedGoogle Scholar
  102. 102.
    Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A et al (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353(10):999–1007PubMedGoogle Scholar
  103. 103.
    Grisar JC, Aletaha D, Steiner CW, Kapral T, Steiner S, Saemann M et al (2007) Endothelial progenitor cells in active rheumatoid arthritis: Effects of TNF and of glucocorticoid therapy. Ann Rheum Dis, doi: 10.1136/ard.2006.066605Google Scholar
  104. 104.
    Seeger FH, Haendeler J, Walter DH, Rochwalsky U, Reinhold J, Urbich C et al (2005) p38 mitogen-activated protein kinase downregulates endothelial progenitor cells. Circulation 111(9):1184–1191PubMedGoogle Scholar
  105. 105.
    Taylor PC, Sivakumar B (2005) Hypoxia and angiogenesis in rheumatoid arthritis. Curr Opin Rheumatol 17(3):293–298PubMedGoogle Scholar
  106. 106.
    Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P (2007) Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 18(3):581–592PubMedGoogle Scholar
  107. 107.
    Statistics OfN. Mortality Statistics: Cause. England and Wales 2005. London TSO 2006Google Scholar
  108. 108.
    Campbell NC, Elliott AM, Sharp L, Ritchie LD, Cassidy J, Little J (2001) Rural and urban differences in stage at diagnosis of colorectal and lung cancers. Br J Cancer 84(7):910–914PubMedGoogle Scholar
  109. 109.
    Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676PubMedGoogle Scholar
  110. 110.
    Hollingsworth HC, Kohn EC, Steinberg SM, Rothenberg ML, Merino MJ (1995) Tumor angiogenesis in advanced stage ovarian carcinoma. Am J Pathol 147(1):33–41PubMedGoogle Scholar
  111. 111.
    Kuwai T, Kitadai Y, Tanaka S, Onogawa S, Matsutani N, Kaio E et al (2003) Expression of hypoxia-inducible factor-1alpha is associated with tumor vascularization in human colorectal carcinoma. Int J Cancer 105(2):176–181PubMedGoogle Scholar
  112. 112.
    Konerding MA, Malkusch W, Klapthor B, van Ackern C, Fait E, Hill SA et al (1999) Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts. Br J Cancer 80(5–6):724–732PubMedGoogle Scholar
  113. 113.
    Denekamp J (1990) Vascular attack as a therapeutic strategy for cancer. Cancer Metastasis Rev 9(3):267–282PubMedGoogle Scholar
  114. 114.
    Wouters BG, Weppler SA, Koritzinsky M, Landuyt W, Nuyts S, Theys J et al (2002) Hypoxia as a target for combined modality treatments. Eur J Cancer 38(2):240–257PubMedGoogle Scholar
  115. 115.
    Goethals L, Debucquoy A, Perneel C, Geboes K, Ectors N, De Schutter H et al (2006) Hypoxia in human colorectal adenocarcinoma: comparison between extrinsic and potential intrinsic hypoxia markers. Int J Radiat Oncol Biol Phys 65(1):246–254PubMedGoogle Scholar
  116. 116.
    Zakarija A, Soff G (2005) Update on angiogenesis inhibitors. Curr Opin Oncol 17(6):578–583PubMedGoogle Scholar
  117. 117.
    Presta LG, Chen H, O’Connor SJ, Chisholm V, Meng YG, Krummen L et al (1997) Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 57(20):4593–4599PubMedGoogle Scholar
  118. 118.
    Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7(9):987–989PubMedGoogle Scholar
  119. 119.
    Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10(2):145–147PubMedGoogle Scholar
  120. 120.
    Koukourakis MI, Mavanis I, Kouklakis G, Pitiakoudis M, Minopoulos G, Manolas C et al (2007) Early antivascular effects of bevacizumab anti-VEGF monoclonal antibody on colorectal carcinomas assessed with functional CT imaging. Am J Clin Oncol 30(3):315–318PubMedGoogle Scholar
  121. 121.
    Yao K, Gietema JA, Shida S, Selvakumaran M, Fonrose X, Haas NB et al (2005) In vitro hypoxia-conditioned colon cancer cell lines derived from HCT116 and HT29 exhibit altered apoptosis susceptibility and a more angiogenic profile in vivo. Br J Cancer 93(12):1356–1363PubMedGoogle Scholar
  122. 122.
    Kabbinavar F, Hurwitz HI, Fehrenbacher L, Meropol NJ, Novotny WF, Lieberman G et al (2003) Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 21(1):60–65PubMedGoogle Scholar
  123. 123.
    Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342PubMedGoogle Scholar
  124. 124.
    Kabbinavar FF, Hambleton J, Mass RD, Hurwitz HI, Bergsland E, Sarkar S (2005) Combined analysis of efficacy: the addition of bevacizumab to fluorouracil/leucovorin improves survival for patients with metastatic colorectal cancer. J Clin Oncol 23(16):3706–3712PubMedGoogle Scholar
  125. 125.
    Giantonio BJ, Levy DE, O’Dwyer P J, Meropol NJ, Catalano PJ, Benson AB 3rd (2006) A phase II study of high-dose bevacizumab in combination with irinotecan, 5-fluorouracil, leucovorin, as initial therapy for advanced colorectal cancer: results from the Eastern Cooperative Oncology Group study E2200. Ann Oncol 17(9):1399–1403PubMedGoogle Scholar
  126. 126.
    Wood JM, Bold G, Buchdunger E, Cozens R, Ferrari S, Frei J et al (2000) PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res 60(8):2178–2189PubMedGoogle Scholar
  127. 127.
    Hecht J, Trarbach T, Jaeger E, Hainsworth J, Wolff R, Lloyd K et al (2005) A randomized, double-blind, placebo-controlled, phase III study in patients (Pts) with metastatic adenocarcinoma of the colon or rectum receiving first-line chemotherapy with oxaliplatin/ 5-fluorouracil. J Clin Oncol 2005 ASCO Annual Meeting Proceedings 23(16S, Part I of II (June 1 Supplement)):3Google Scholar
  128. 128.
    Koehne C, Bajetta E, Lin E, Van Cutsem E, Hecht J, Douillard J et al (2006) Results of an interim analysis of a multinational randomized, double-blind, phase III study in patients (pts) with previously treated metastatic colorectal cancer (mCRC) receiving FOLFOX4 and PTK787/ZK 222584 (PTK/ZK) or placebo (CONFIRM 2). J Clin Oncol, 2006 ASCO Annual Meeting Proceedings Part I 24(No. 18S (June 20 Supplement), 2006):3508Google Scholar
  129. 129.
    Major P, Trarbach T, Lenz H, Kerr D, Pendergrass K, Douillard J et al (2006) A meta-analysis of two randomized, double-blind, placebo-controlled, phase III studies in patients (pts) with metastatic colorectal cancer (mCRC) receiving FOLFOX4 and PTK/ZK to determine clinical benefit on progression-free survival (PFS) in high LDH pts. J Clin Oncol, 2006 ASCO Annual Meeting Proceedings Part I 24(No. 18S (June 20 Supplement)):3529Google Scholar
  130. 130.
    Jost LM, Gschwind HP, Jalava T, Wang Y, Guenther C, Souppart C et al (2006) Metabolism and disposition of vatalanib (PTK787/ZK-222584) in cancer patients. Drug Metab Dispos 34(11):1817–1828PubMedGoogle Scholar
  131. 131.
    Malemud CJ (2007) Growth hormone, VEGF and FGF: involvement in rheumatoid arthritis. Clin Chim Acta 375(1–2):10–19PubMedGoogle Scholar
  132. 132.
    Berry S, Cunningham D, Michael M, Dibartolomeo M, Rivera F, Kretzschmar A et al (2006) Preliminary safety of bevacizumab with first-line Folfox, Capox, Folfiri and capecitabine for mCRC-First B.E.A.Trial. J Clin Oncol, ASCO Annual Meeting Proceedings Part I 24(No. 18S (June 20 Supplement)):3534Google Scholar
  133. 133.
    Scappaticci FA, Fehrenbacher L, Cartwright T, Hainsworth JD, Heim W, Berlin J et al (2005) Surgical wound healing complications in metastatic colorectal cancer patients treated with bevacizumab. J Surg Oncol 91(3):173–180PubMedGoogle Scholar
  134. 134.
    Tabruyn SP, Griffioen AW (2007) Molecular pathways of angiogenesis inhibition. Biochem Biophys Res Commun 355(1):1–5PubMedGoogle Scholar
  135. 135.
    Williams RO (2007) Collagen-induced arthritis in mice: a major role for tumor necrosis factor-alpha. Methods Mol Biol (Clifton, NJ 361:265–284Google Scholar
  136. 136.
    Holmdahl R, Jansson L, Larsson E, Rubin K, Klareskog L (1986) Homologous type II collagen induces chronic and progressive arthritis in mice. Arthritis Rheum 29(1):106–113PubMedGoogle Scholar
  137. 137.
    Malfait AM, Williams RO, Malik AS, Maini RN, Feldmann M (2001) Chronic relapsing homologous collagen-induced arthritis in DBA/1 mice as a model for testing disease-modifying and remission-inducing therapies. Arthritis Rheum 44(5):1215–1224PubMedGoogle Scholar
  138. 138.
    Williams RO, Ghrayeb J, Feldmann M, Maini RN (1995) Successful therapy of collagen-induced arthritis with TNF receptor-IgG fusion protein and combination with anti-CD4. Immunology 84(3):433–439PubMedGoogle Scholar
  139. 139.
    Williams RO, Marinova-Mutafchieva L, Feldmann M, Maini RN (2000) Evaluation of TNF-alpha and IL-1 blockade in collagen-induced arthritis and comparison with combined anti-TNF-alpha/anti-CD4 therapy. J Immunol 165(12):7240–7245PubMedGoogle Scholar
  140. 140.
    Williams RO, Mason LJ, Feldmann M, Maini RN (1994) Synergy between anti-CD4 and anti-tumor necrosis factor in the amelioration of established collagen-induced arthritis. Proc Natl Acad Sci USA 91(7):2762–2766PubMedGoogle Scholar
  141. 141.
    Lu J, Kasama T, Kobayashi K, Yoda Y, Shiozawa F, Hanyuda M et al (2000) Vascular endothelial growth factor expression and regulation of murine collagen-induced arthritis. J Immunol 164(11):5922–5927PubMedGoogle Scholar
  142. 142.
    Sone H, Kawakami Y, Sakauchi M, Nakamura Y, Takahashi A, Shimano H et al (2001) Neutralization of vascular endothelial growth factor prevents collagen-induced arthritis and ameliorates established disease in mice. Biochem Biophys Res Commun 281(2):562–568PubMedGoogle Scholar
  143. 143.
    Miotla J, Maciewicz R, Kendrew J, Feldmann M, Paleolog E (2000) Treatment with soluble VEGF receptor reduces disease severity in murine collagen-induced arthritis. Lab Invest 80(8):1195–1205PubMedCrossRefGoogle Scholar
  144. 144.
    Afuwape AO, Feldmann M, Paleolog EM (2003) Adenoviral delivery of soluble VEGF receptor 1 (sFlt-1) abrogates disease activity in murine collagen-induced arthritis. Gene Ther 10(23):1950–1960PubMedGoogle Scholar
  145. 145.
    de Bandt M, Ben Mahdi MH, Ollivier V, Grossin M, Dupuis M, Gaudry M et al (2003) Blockade of vascular endothelial growth factor receptor I (VEGF-RI), but not VEGF-RII, suppresses joint destruction in the K/BxN model of rheumatoid arthritis. J Immunol 171(9):4853–4859PubMedGoogle Scholar
  146. 146.
    Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F et al (2002) Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8(8):831–840PubMedGoogle Scholar
  147. 147.
    Grosios K, Wood J, Esser R, Raychaudhuri A, Dawson J (2004) Angiogenesis inhibition by the novel VEGF receptor tyrosine kinase inhibitor, PTK787/ZK222584, causes significant anti-arthritic effects in models of rheumatoid arthritis. Inflamm Res 53(4):133–142PubMedGoogle Scholar
  148. 148.
    Clauss M, Weich H, Breier G, Knies U, Rockl W, Waltenberger J et al (1996) The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem 271(30):17629–17634PubMedGoogle Scholar
  149. 149.
    Sawano A, Iwai S, Sakurai Y, Ito M, Shitara K, Nakahata T et al (2001) Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood 97(3):785–791PubMedGoogle Scholar
  150. 150.
    Murakami M, Iwai S, Hiratsuka S, Yamauchi M, Nakamura K, Iwakura Y et al (2006) Signaling of vascular endothelial growth factor receptor-1 tyrosine kinase promotes rheumatoid arthritis through activation of monocytes/macrophages. Blood 108(6):1849–1856PubMedGoogle Scholar
  151. 151.
    Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439PubMedGoogle Scholar
  152. 152.
    Mould AW, Tonks ID, Cahill MM, Pettit AR, Thomas R, Hayward NK et al (2003) Vegfb gene knockout mice display reduced pathology and synovial angiogenesis in both antigen-induced and collagen-induced models of arthritis. Arthritis Rheum 48(9):2660–2669PubMedGoogle Scholar
  153. 153.
    Autiero M, Luttun A, Tjwa M, Carmeliet P (2003) Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J Thromb Haemost 1(7):1356–1370PubMedGoogle Scholar
  154. 154.
    Tjwa M, Luttun A, Autiero M, Carmeliet P (2003) VEGF and PlGF: two pleiotropic growth factors with distinct roles in development and homeostasis. Cell Tissue Res 314(1):5–14PubMedGoogle Scholar
  155. 155.
    Autiero M, Waltenberger J, Communi D, Kranz A, Moons L, Lambrechts D et al (2003) Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 9(7):936–943PubMedGoogle Scholar
  156. 156.
    Oosthuyse B, Moons L, Storkebaum E, Beck H, Nuyens D, Brusselmans K et al (2001) Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 28(2):131–138PubMedGoogle Scholar
  157. 157.
    Bottomley MJ, Webb NJ, Watson CJ, Holt L, Bukhari M, Denton J et al (2000) Placenta growth factor (PlGF) induces vascular endothelial growth factor (VEGF) secretion from mononuclear cells and is co-expressed with VEGF in synovial fluid. Clin Exp Immunol 119(1):182–188PubMedGoogle Scholar
  158. 158.
    Date K, Matsumoto K, Shimura H, Tanaka M, Nakamura T (1997) HGF/NK4 is a specific antagonist for pleiotrophic actions of hepatocyte growth factor. FEBS Lett 420(1):1–6PubMedGoogle Scholar
  159. 159.
    Kuba K, Matsumoto K, Date K, Shimura H, Tanaka M, Nakamura T (2000) HGF/NK4, a four-kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice. Cancer Res 60(23):6737–6743PubMedGoogle Scholar
  160. 160.
    Nakabayashi M, Morishita R, Nakagami H, Kuba K, Matsumoto K, Nakamura T et al (2003) HGF/NK4 inhibited VEGF-induced angiogenesis in in vitro cultured endothelial cells and in vivo rabbit model. Diabetologia 46(1):115–123PubMedGoogle Scholar
  161. 161.
    Matsumoto K, Nakamura T (2005) Mechanisms and significance of bifunctional NK4 in cancer treatment. Biochem Biophys Res Commun 333(2):316–327PubMedGoogle Scholar
  162. 162.
    Kim JM, Ho SH, Park EJ, Hahn W, Cho H, Jeong JG et al (2002) Angiostatin gene transfer as an effective treatment strategy in murine collagen-induced arthritis. Arthritis Rheum 46(3):793–801PubMedGoogle Scholar
  163. 163.
    Kato K, Miyake K, Igarashi T, Yoshino S, Shimada T (2005) Human immunodeficiency virus vector-mediated intra-articular expression of angiostatin inhibits progression of collagen-induced arthritis in mice. Rheumatol Int 25(7):522–529PubMedGoogle Scholar
  164. 164.
    Takahashi H, Kato K, Miyake K, Hirai Y, Yoshino S, Shimada T (2005) Adeno-associated virus vector-mediated anti-angiogenic gene therapy for collagen-induced arthritis in mice. Clin Exp Rheumatol 23(4):455–461PubMedGoogle Scholar
  165. 165.
    Sumariwalla P, Cao Y, Wu H, Feldmann M, Paleolog E (2003) The angiogenesis inhibitor protease-activated kringles 1–5 reduces the severity of murine collagen-induced arthritis. Arthritis Res Ther 5:R32–R39PubMedGoogle Scholar
  166. 166.
    Matsuno H, Yudoh K, Uzuki M, Nakazawa F, Sawai T, Yamaguchi N et al (2002) Treatment with the angiogenesis inhibitor endostatin: a novel therapy in rheumatoid arthritis. J Rheumatol 29(5):890–895PubMedGoogle Scholar
  167. 167.
    Yin G, Liu W, An P, Li P, Ding I, Planelles V et al (2002) Endostatin gene transfer inhibits joint angiogenesis and pannus formation in inflammatory arthritis. Mol Ther 5(5 Pt 1):547–554PubMedGoogle Scholar
  168. 168.
    Kurosaka D, Yoshida K, Yasuda J, Yokoyama T, Kingetsu I, Yamaguchi N et al (2003) Inhibition of arthritis by systemic administration of endostatin in passive murine collagen induced arthritis. Ann Rheum Dis 62(7):677–679PubMedGoogle Scholar
  169. 169.
    Yue L, Shen YX, Feng LJ, Chen FH, Yao HW, Liu LH et al (2007) Blockage of the formation of new blood vessels by recombinant human endostatin contributes to the regression of rat adjuvant arthritis. Eur J Pharmacol 567(1–2):166–170PubMedGoogle Scholar
  170. 170.
    de Bandt M, Grossin M, Weber AJ, Chopin M, Elbim C, Pla M et al (2000) Suppression of arthritis and protection from bone destruction by treatment with TNP-470/AGM-1470 in a transgenic mouse model of rheumatoid arthritis. Arthritis Rheum 43(9):2056–2063PubMedGoogle Scholar
  171. 171.
    Arsenault AL, Lhotak S, Hunter WL, Banquerigo ML, Brahn E (1998) Taxol involution of collagen-induced arthritis: ultrastructural correlation with the inhibition of synovitis and neovascularization. Clin Immunol Immunopathol 86(3):280–289PubMedGoogle Scholar
  172. 172.
    Peacock DJ, Banquerigo ML, Brahn E (1992) Angiogenesis inhibition suppresses collagen arthritis. J Exp Med 175(4):1135–1138PubMedGoogle Scholar
  173. 173.
    Peacock DJ, Banquerigo ML, Brahn E (1995) A novel angiogenesis inhibitor suppresses rat adjuvant arthritis. Cell Immunol 160(2):178–184PubMedGoogle Scholar
  174. 174.
    Oliver SJ, Banquerigo ML, Brahn E (1994) Suppression of collagen-induced arthritis using an angiogenesis inhibitor, AGM-1470, and a microtubule stabilizer, taxol. Cell Immunol 157(1):291–299PubMedGoogle Scholar
  175. 175.
    Oliver SJ, Cheng TP, Banquerigo ML, Brahn E (1995) Suppression of collagen-induced arthritis by an angiogenesis inhibitor, AGM-1470, in combination with cyclosporin: reduction of vascular endothelial growth factor (VEGF). Cell Immunol 166(2):196–206PubMedGoogle Scholar
  176. 176.
    Nagashima M, Tanaka H, Takahashi H, Tachihara A, Tanaka K, Ishiwata T et al (2002) Study of the mechanism involved in angiogenesis and synovial cell proliferation in human synovial tissues of patients with rheumatoid arthritis using SCID mice. Lab Invest 82(8):981–988PubMedGoogle Scholar
  177. 177.
    Bernier SG, Lazarus DD, Clark E, Doyle B, Labenski MT, Thompson CD et al (2004) A methionine aminopeptidase-2 inhibitor, PPI-2458, for the treatment of rheumatoid arthritis. Proc Natl Acad Sci USA 101(29):10768–10773PubMedGoogle Scholar
  178. 178.
    Bernier SG, Taghizadeh N, Thompson CD, Westlin WF, Hannig G (2005) Methionine aminopeptidases type I and type II are essential to control cell proliferation. J Cell Biochem 95(6):1191–1203PubMedGoogle Scholar
  179. 179.
    Fotsis T, Zhang Y, Pepper MS, Adlercreutz H, Montesano R, Nawroth PP et al (1994) The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumour growth. Nature 368(6468):237–239PubMedGoogle Scholar
  180. 180.
    Ireson CR, Chander SK, Purohit A, Perera S, Newman SP, Parish D et al (2004) Pharmacokinetics and efficacy of 2-methoxyoestradiol and 2-methoxyoestradiol-bis-sulphamate in vivo in rodents. Br J Cancer 90(4):932–937PubMedGoogle Scholar
  181. 181.
    Holmdahl R, Jansson L, Meyerson B, Klareskog L (1987) Oestrogen induced suppression of collagen arthritis: I. Long term oestradiol treatment of DBA/1 mice reduces severity and incidence of arthritis and decreases the anti type II collagen immune response. Clin Exp Immunol 70(2):372–378PubMedGoogle Scholar
  182. 182.
    Josefsson E, Tarkowski A (1997) Suppression of type II collagen-induced arthritis by the endogenous estrogen metabolite 2-methoxyestradiol. Arthritis Rheum 40(1):154–163PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  • Tak Loon Khong
    • 1
    • 2
  • Helene Larsen
    • 1
  • Yvonne Raatz
    • 1
  • Ewa Paleolog
    • 1
    • 2
    Email author
  1. 1.Kennedy Institute of Rheumatology, Faculty of MedicineImperial College LondonLondonUK
  2. 2.Division of Surgery, Oncology, Reproductive Biology & Anaesthetics, Faculty of MedicineImperial CollegeLondonUK

Personalised recommendations