, Volume 10, Issue 3, pp 149–166 | Cite as

Angiogenesis and chronic inflammation: cause or consequence?

Review Paper


Evidence has been gathered regarding the association between angiogenesis and inflammation in pathological situations. These two phenomena have long been coupled together in many chronic inflammatory disorders with distinct etiopathogenic origin, including psoriasis, rheumatoid arthritis, Crohn’s disease, diabetes, and cancer. Lately, this concept has further been substantiated by the finding that several previously established non-inflammatory disorders, such as osteoarthritis and obesity, display both inflammation and angiogenesis in an exacerbated manner. In addition, the interplay between inflammatory cells, endothelial cells and fibroblasts in chronic inflammation sites, together with the fact that inflammation and angiogenesis can actually be triggered by the same molecular events, further strengthen this association. Therefore, elucidating the underlying cellular and molecular mechanisms that gather together the two processes is mandatory in order to understand their synergistic effect, and to develop new therapeutic approaches for the management of these disorders that cause a great deal of discomfort, disability, and in some cases death.


Angiogenesis Cytokines Disease Growth factors Inflammation Therapeutic strategies 



The authors would like to thank Professor Isabel Azevedo for her helpful discussions, comments and revision of the manuscript. Carla Costa was funded by “Fundação da Ciência e Tecnologia” (SFRH/BPD/20832/2004).


  1. 1.
    Benelli R, Lorusso G, Albini A, Noonan DM (2006) Cytokines and chemokines as regulators of angiogenesis in health and disease. Curr Pharm Des 12:3101–3115PubMedCrossRefGoogle Scholar
  2. 2.
    Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354:610–621PubMedCrossRefGoogle Scholar
  3. 3.
    Charo IF, Taubman MB (2004) Chemokines in the pathogenesis of vascular disease. Circ Res 95:858–866PubMedCrossRefGoogle Scholar
  4. 4.
    Coussens L, Werb Z (2002) Inflammation and cancer. Nature 420:860–867PubMedCrossRefGoogle Scholar
  5. 5.
    Carmeliet P (2005) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395CrossRefGoogle Scholar
  6. 6.
    Bonnet CS, Walsh DA (2005) Osteoarthritis, angiogenesis and inflammation. Rheumatology (Oxford) 44:7–16CrossRefGoogle Scholar
  7. 7.
    Lusis AJ (2000) Atherosclerosis. Nature 407:233–241PubMedCrossRefGoogle Scholar
  8. 8.
    Trayhurn P, Wood IS (2004) Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr 92:347–355PubMedCrossRefGoogle Scholar
  9. 9.
    Wubben DP, Adams AK (2006) Metabolic syndrome: what’s in a name? WMJ 105:17–20PubMedGoogle Scholar
  10. 10.
    Tan TT, Coussens L (2007) Humoral immunity, inflammation and cancer. Curr Opin Immunol 19:1–8CrossRefGoogle Scholar
  11. 11.
    Ishida S, Usui T, Yamashiro K et al (2003) VEGF164-mediated inflammation is required for pathological, but not physiological, ischemia-induced retinal neovascularization. J Exp Med 198:483–489PubMedCrossRefGoogle Scholar
  12. 12.
    Otani A, Takagi H, Oh H et al (1999) Expression of angiopoietins and Tie2 in human choroidal neovascular membranes. Invest Ophthalmol Vis Sci 40:1912–1920PubMedGoogle Scholar
  13. 13.
    Nathan C (2002) Points of control in inflammation. Nature 420:846–852PubMedCrossRefGoogle Scholar
  14. 14.
    Philip M, Rowley DA, Schreiber H (2004) Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol 14:433–439PubMedCrossRefGoogle Scholar
  15. 15.
    Visser K, Eichten A, Coussens L (2006) Paradoxical roles of the immune system during cancer development. Nat Cancer Rev 6:24–37CrossRefGoogle Scholar
  16. 16.
    Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859PubMedCrossRefGoogle Scholar
  17. 17.
    Beaudeux JL, Giral P, Bruckert E et al (2004) Matrix metalloproteinases, inflammation and atherosclerosis: therapeutic perspectives. Clin Chem Lab Med 42:121–131PubMedCrossRefGoogle Scholar
  18. 18.
    Mrowietz U, Boehncke WH (2006) Leukocyte adhesion: a suitable target for anti-inflammatory drugs. Curr Pharm Des 12:2825–2831PubMedCrossRefGoogle Scholar
  19. 19.
    Baynes J, Dominiczak M (eds) (2005) Medical biochemistry. Blackwell, LondonGoogle Scholar
  20. 20.
    Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936PubMedCrossRefGoogle Scholar
  21. 21.
    Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257PubMedCrossRefGoogle Scholar
  22. 22.
    Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31PubMedCrossRefGoogle Scholar
  23. 23.
    Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364PubMedCrossRefGoogle Scholar
  24. 24.
    Asahara T, Masuda H, Takahashi T et al (1999) Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221–228PubMedGoogle Scholar
  25. 25.
    Lyden D, Hattori K, Dias S et al (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7:1194–1101PubMedCrossRefGoogle Scholar
  26. 26.
    Costa C (2006) Influence of angiogenic factors and bone marrow-derived endothelial/hematopoietic cells in the growth of solid tumors. Crit Rev Oncog 12:157–160Google Scholar
  27. 27.
    Yancopoulos GD, Davis S, Gale NW et al (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248PubMedCrossRefGoogle Scholar
  28. 28.
    Presta M, Dell’Era P, Mitola S et al (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16:159–178PubMedCrossRefGoogle Scholar
  29. 29.
    Miyazono K, Usuki K, Heldin CH (1991) Platelet-derived endothelial cell growth factor. Prog Growth Factor Res 3:207–217PubMedCrossRefGoogle Scholar
  30. 30.
    Ohnishi T, Daikuhara Y (2003) Hepatocyte growth factor/scatter factor in development, inflammation and carcinogenesis: its expression and role in oral tissues. Arch Oral Biol 48:797–704PubMedCrossRefGoogle Scholar
  31. 31.
    Luttun A, Tjwa M, Carmeliet P (2002) Placental growth factor (PlGF) and its receptor Flt-1 (VEGFR-1): novel therapeutic targets for angiogenic disorders. Ann N Y Acad Sci 979:80–93PubMedCrossRefGoogle Scholar
  32. 32.
    Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676PubMedCrossRefGoogle Scholar
  33. 33.
    Wheeler-Jones C, Abu-Ghazaleh R, Cospedal R et al (1997) Vascular endothelial growth factor stimulates prostacyclin production and activation of cytosolic phospholipase A2 in endothelial cells via p42/p44 mitogen-activated protein kinase. FEBS Lett 420:28–32PubMedCrossRefGoogle Scholar
  34. 34.
    Gerber HP, McMurtrey A, Kowalski J et al (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273:30336–30343PubMedCrossRefGoogle Scholar
  35. 35.
    Gerber HP, Dixit V, Ferrara N (1998) Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 273:13313–13316PubMedCrossRefGoogle Scholar
  36. 36.
    Asahara T, Takahashi T, Masuda H et al (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18:3964–3972PubMedCrossRefGoogle Scholar
  37. 37.
    Costa C, Soares R, Schmitt F (2004) Angiogenesis: now and then. APMIS 112:402–412PubMedCrossRefGoogle Scholar
  38. 38.
    Soares R, Guo S, Russo J et al (2003) Role of the estrogen antagonist ICI 182,780 in vessel assembly and apoptosis of endothelial cells. Ultrastruct Pathol 27:33–39PubMedCrossRefGoogle Scholar
  39. 39.
    Soares R, Guo S, Gartner F et al (2003) 17 beta-estradiol-mediated vessel assembly and stabilization in tumor angiogenesis requires TGF beta and EGFR crosstalk. Angiogenesis 6:271–281PubMedCrossRefGoogle Scholar
  40. 40.
    Soares R, Balogh G, Guo S et al (2004) Evidence for the notch signaling pathway on the role of estrogen in angiogenesis. Mol Endocrinol 18:2333–2343PubMedCrossRefGoogle Scholar
  41. 41.
    Costa C, Soares R, Reis-Filho JS et al (2002) Cyclo-oxygenase 2 expression is associated with angiogenesis and lymph node metastasis in human breast cancer. J Clin Pathol 55:429–434PubMedGoogle Scholar
  42. 42.
    Murdoch C, Muthana M, Lewis CE (2005) Hypoxia regulates macrophage functions in inflammation. J Immunol 175:6257–6263PubMedGoogle Scholar
  43. 43.
    Semenza GL, Shimoda LA, Prabhakar NR (2006) Regulation of gene expression by HIF-1. Novartis Found Symp 272:2–8PubMedGoogle Scholar
  44. 44.
    Kreis T, Vale R (1999) Guidebook to the extracellular matrix, anchor, and adhesion proteins. Wiley, New YorkGoogle Scholar
  45. 45.
    Ley K (2001) Pathways and bottlenecks in the web of inflammatory adhesion molecules and chemoattractants. Immunol Res 24:87–95PubMedCrossRefGoogle Scholar
  46. 46.
    Johnson BA, Haines GK, Harlow LA et al (1993) Adhesion molecule expression in human synovial tissue. Arthritis Rheum 36:137–146PubMedGoogle Scholar
  47. 47.
    Danese S, Sans M, de la MC et al (2006) Angiogenesis as a novel component of inflammatory bowel disease pathogenesis. Gastroenterology 130:2060–2073PubMedCrossRefGoogle Scholar
  48. 48.
    Naldini A, Carraro F (2005) Role of inflammatory mediators in angiogenesis. Curr Drug Targets Inflamm Allergy 4:3–8PubMedCrossRefGoogle Scholar
  49. 49.
    Gong R, Rifai A, Dworkin LD (2006) Anti-inflammatory effect of hepatocyte growth factor in chronic kidney disease: targeting the inflamed vascular endothelium. J Am Soc Nephrol 17:2464–2473PubMedCrossRefGoogle Scholar
  50. 50.
    Funa K, Uramoto H (2003) Regulatory mechanisms for the expression and activity of platelet-derived growth factor receptor. Acta Biochim Pol 50:647–658PubMedGoogle Scholar
  51. 51.
    Lee YC (2005) The involvement of VEGF in endothelial permeability: a target for anti-inflammatory therapy. Curr Opin Invest Drugs 6:1124–1130Google Scholar
  52. 52.
    Maxwell PH, Wiesener MS, Chang GW et al (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275PubMedCrossRefGoogle Scholar
  53. 53.
    Karin M, Cao Y, Greten FR et al (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310PubMedCrossRefGoogle Scholar
  54. 54.
    Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436PubMedCrossRefGoogle Scholar
  55. 55.
    Pacifico F, Leonardi A (2006) NF-kappaB in solid tumors. Biochem Pharmacol 272:1142–1152CrossRefGoogle Scholar
  56. 56.
    Nam NH (2006) Naturally occurring NF-kappaB inhibitors. Mini Rev Med Chem 6:945–951PubMedCrossRefGoogle Scholar
  57. 57.
    Fiedler U, Reiss Y, Scharpfenecker M et al (2006) Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 12:235–239PubMedCrossRefGoogle Scholar
  58. 58.
    Mouta C, Heroult M (2003) Inflammatory triggers of lymphangiogenesis. Lymphat Res Biol 1:201–218PubMedCrossRefGoogle Scholar
  59. 59.
    Creamer D, Sullivan D, Bicknell R et al (2002) Angiogenesis in psoriasis. Angiogenesis 5:231–236PubMedCrossRefGoogle Scholar
  60. 60.
    Plant D, Young HS, Watson RE et al (2006) The CX3CL1-CX3CR1 system and psoriasis. Exp Dermatol 15:900–903PubMedCrossRefGoogle Scholar
  61. 61.
    Schon MP, Ludwig RJ (2005) Lymphocyte trafficking to inflamed skin-molecular mechanisms and implications for therapeutic target molecules. Expert Opin Ther Targets 9:225–243PubMedCrossRefGoogle Scholar
  62. 62.
    Lowes MA, Chamian F, Abello MV et al (2005) Increase in TNF-alpha and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). Proc Natl Acad Sci USA 102:19057–19062PubMedCrossRefGoogle Scholar
  63. 63.
    Creamer D, Allen M, Sousa A et al (1995) Altered vascular endothelium integrin expression in psoriasis. Am J Pathol 147:1661–1667PubMedGoogle Scholar
  64. 64.
    Yonekawa K, Harlan JM (2005) Targeting leukocyte integrins in human diseases. J Leukoc Biol 77:129–140PubMedCrossRefGoogle Scholar
  65. 65.
    Nickoloff BJ, Bonish BK, Marble DJ et al (2006) Lessons learned from psoriatic plaques concerning mechanisms of tissue repair, remodeling, and inflammation. J Invest. Dermatol 126(Suppl):16Google Scholar
  66. 66.
    Pastore S, Mascia F, Mariotti F et al (2004) Chemokine networks in inflammatory skin diseases. Eur J Dermatol 14:203–208PubMedGoogle Scholar
  67. 67.
    Nielsen HJ, Christensen IJ, Svendsen MN et al (2002) Elevated plasma levels of vascular endothelial growth factor and plasminogen activator inhibitor-1 decrease during improvement of psoriasis. Inflamm Res 51:563–567PubMedCrossRefGoogle Scholar
  68. 68.
    Detmar M, Brown LF, Claffey KP et al (1994) Overexpression of vascular permeability factor/vascular endothelial growth factor and its receptors in psoriasis. J Exp Med 180:1141–1146PubMedCrossRefGoogle Scholar
  69. 69.
    Detmar M (2000) The role of VEGF and thrombospondins in skin angiogenesis. J Dermatol Sci 24(Suppl 1):S78–S84PubMedCrossRefGoogle Scholar
  70. 70.
    Cordiali-Fei P, Trento E, D’Agosto G et al (2006) Decreased levels of metalloproteinase-9 and angiogenic factors in skin lesions of patients with psoriatic arthritis after therapy with anti-TNF-alpha. J Autoimmune Dis 5:3–5Google Scholar
  71. 71.
    Xia YP, Li B, Hylton D et al (2003) Transgenic delivery of VEGF to mouse skin leads to an inflammatory condition resembling human psoriasis. Blood 102:161–168PubMedCrossRefGoogle Scholar
  72. 72.
    Hernandez GL, Volpert OV, Iniguez MA et al (2001) Selective inhibition of vascular endothelial growth factor-mediated angiogenesis by cyclosporin A: roles of the nuclear factor of activated T cells and cyclooxygenase 2. J Exp Med 193:607–620PubMedCrossRefGoogle Scholar
  73. 73.
    Shear NH, Langley RG, Ho V (2006) Efalizumab, a reversible T-cell modulator for psoriasis. J Cutan Med Surg 9(Suppl 1):4–9PubMedGoogle Scholar
  74. 74.
    Numerof RP, Dinarello CA, Asadullah K (2005) Cytokines as potential therapeutic targets for inflammatory skin diseases. Eur Cytokine Netw 16:101–103PubMedGoogle Scholar
  75. 75.
    Bainbridge J, Sivakumar B, Paleolog E (2006) Angiogenesis as a therapeutic target in arthritis: lessons from oncology. Curr Pharm Des 12:2631–2644PubMedCrossRefGoogle Scholar
  76. 76.
    Vergunst CE, van der Sande MG, Lebre MC et al (2005) The role of chemokines in rheumatoid arthritis and osteoarthritis. Scand J Rheumatol 34:415–425PubMedCrossRefGoogle Scholar
  77. 77.
    Smith MD, Barg E, Weedon H et al (2003) Microarchitecture and protective mechanisms in synovial tissue from clinically and arthroscopically normal knee joints. Ann Rheum Dis 62:303–307PubMedCrossRefGoogle Scholar
  78. 78.
    Paleolog EM (2002) Angiogenesis in rheumatoid arthritis. Arthritis Res 4(Suppl 3):S81–S90PubMedCrossRefGoogle Scholar
  79. 79.
    Paleolog EM, Fava RA (1998) Angiogenesis in rheumatoid arthritis: implications for future therapeutic strategies. Semin Immunopathol 20:73–94CrossRefGoogle Scholar
  80. 80.
    Rooney M, Condell D, Quinlan W et al (1988) Analysis of the histologic variation of synovitis in rheumatoid arthritis. Arthritis Rheum 31:956–963PubMedCrossRefGoogle Scholar
  81. 81.
    Walsh DA (1999) Angiogenesis and arthritis. Rheumatology 38:103–112PubMedCrossRefGoogle Scholar
  82. 82.
    Etherington PJ, Winlove P, Taylor P et al (2002) VEGF release is associated with reduced oxygen tensions in experimental inflammatory arthritis. Clin Exp Rheumatol 20:799–805PubMedGoogle Scholar
  83. 83.
    Maruotti N, Crivellato E, Cantatore FP et al (2007) Mast cells in rheumatoid arthritis. Clin Rheumatol 26:1–4PubMedCrossRefGoogle Scholar
  84. 84.
    Smolen JS, Redlich K, Zwerina J et al (2005) Pro-inflammatory cytokines in rheumatoid arthritis: pathogenetic and therapeutic aspects. Clin Rev Allergy Immunol 28:239–248PubMedCrossRefGoogle Scholar
  85. 85.
    Karouzakis E, Neidhart M, Gay RE et al (2006) Molecular and cellular basis of rheumatoid joint destruction. Immunol Lett 106:8–13PubMedCrossRefGoogle Scholar
  86. 86.
    Perper SJ, Browning B, Burkly LC et al (2006) TWEAK is a novel arthritogenic mediator. J Immunol 177:2610–2620PubMedGoogle Scholar
  87. 87.
    Monaco C, Andreakos E, Kiriakidis S et al (2004) T-cell-mediated signalling in immune, inflammatory and angiogenic processes: the cascade of events leading to inflammatory diseases. Curr Drug Targets Inflamm Allergy 3:35–42PubMedCrossRefGoogle Scholar
  88. 88.
    Kasama T, Miwa Y, Isozaki T et al (2005) Neutrophil-derived cytokines: potential therapeutic targets in inflammation. Curr Drug Targets Inflamm Allergy 4:273–279PubMedCrossRefGoogle Scholar
  89. 89.
    Nakahara H, Song J, Sugimoto M et al (2003) Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum 48:1521–1529PubMedCrossRefGoogle Scholar
  90. 90.
    Winn RK, Harlan JM (2005) The role of endothelial cell apoptosis in inflammatory and immune diseases. J Thromb Haemost 3:1815–1824PubMedCrossRefGoogle Scholar
  91. 91.
    Kang RY, Freire-Moar J, Sigal E et al (1996) Expression of cyclooxygenase-2 in human and an animal model of rheumatoid arthritis. Br J Rheumatol 35:711–718PubMedCrossRefGoogle Scholar
  92. 92.
    Martel-Pelletier J, Pelletier JP, Fahmi H (2003) Cyclooxygenase-2 and prostaglandins in articular tissues. Semin Arthritis Rheum 33:155–167PubMedCrossRefGoogle Scholar
  93. 93.
    Gately S (2000) The contributions of cyclooxygenase-2 to tumor angiogenesis. Cancer Metastasis Rev 19:19–27PubMedCrossRefGoogle Scholar
  94. 94.
    Woods JM, Mogollon A, Amin MA et al (2003) The role of COX-2 in angiogenesis and rheumatoid arthritis. Exp Mol Pathol 74:282–290PubMedCrossRefGoogle Scholar
  95. 95.
    Maisonpierre PC, Suri C, Jones PF et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60PubMedCrossRefGoogle Scholar
  96. 96.
    Scott BB, Zaratin PF, Colombo A et al (2002) Constitutive expression of angiopoietin-1 and -2 and modulation of their expression by inflammatory cytokines in rheumatoid arthritis synovial fibroblasts. J Rheumatol 29:230–239PubMedGoogle Scholar
  97. 97.
    Fiedler U, Augustin HG (2006) Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol 27:552–558PubMedCrossRefGoogle Scholar
  98. 98.
    Harada M, Mitsuyama K, Yoshida H et al (1998) Vascular endothelial growth factor in patients with rheumatoid arthritis. Scand J Rheumatol 27:377–380PubMedCrossRefGoogle Scholar
  99. 99.
    Lee SS, Joo YS, Kim WU et al (2001) Vascular endothelial growth factor levels in the serum and synovial fluid of patients with rheumatoid arthritis. Clin Exp Rheumatol 19:321–324PubMedGoogle Scholar
  100. 100.
    Paleolog EM, Young S, Stark AC et al (1998) Modulation of angiogenic vascular endothelial growth factor by tumor necrosis factor alpha and interleukin-1 in rheumatoid arthritis. Arthritis Rheum 41:1258–1265PubMedCrossRefGoogle Scholar
  101. 101.
    Ryu S, Lee JH, Kim SI (2006) IL-17 increased the production of vascular endothelial growth factor in rheumatoid arthritis synoviocytes. Clin Rheumatol 25:16–20PubMedCrossRefGoogle Scholar
  102. 102.
    Cho ML, Jung YO, Moon YM et al (2006) Interleukin-18 induces the production of vascular endothelial growth factor (VEGF) in rheumatoid arthritis synovial fibroblasts via AP-1-dependent pathways. Immunol Lett 103:159–166PubMedCrossRefGoogle Scholar
  103. 103.
    Ikeda M, Hosoda Y, Hirose S et al (2000) Expression of vascular endothelial growth factor isoforms and their receptors Flt-1, KDR, and neuropilin-1 in synovial tissues of rheumatoid arthritis. J Pathol 191:426–433PubMedCrossRefGoogle Scholar
  104. 104.
    Malemud CJ (2007) Growth hormone, VEGF and FGF: involvement in rheumatoid arthritis. Clin Chim Acta 375:10–19PubMedCrossRefGoogle Scholar
  105. 105.
    Martel-Pelletier J, Welsch DJ, Pelletier JP (2001) Metalloproteases and inhibitors in arthritic diseases. Best Pract Res Clin Rheumatol 15:805–829PubMedCrossRefGoogle Scholar
  106. 106.
    Burrage PS, Mix KS, Brinckerhoff CE (2006) Matrix metalloproteinases: role in arthritis. Front Biosci 11:529–543PubMedCrossRefGoogle Scholar
  107. 107.
    Lo V, Meadows SE, Saseen J (2006) When should COX-2 selective NSAIDs be used for osteoarthritis and rheumatoid arthritis? J Fam Pract 55:260–262PubMedGoogle Scholar
  108. 108.
    Weaver AL (2003) Differentiating the new rheumatoid arthritis biologic therapies. J Clin Rheumatol 9:99–114PubMedCrossRefGoogle Scholar
  109. 109.
    Moreland LW (2004) Biologic therapies on the horizon for rheumatoid arthritis. J Clin Rheumatol 10:S32–S39PubMedCrossRefGoogle Scholar
  110. 110.
    McInnes IB, Liew FY (2005) Cytokine networks – towards new therapies for rheumatoid arthritis. Nat Clin Pract Rheumatol 1:31–39PubMedCrossRefGoogle Scholar
  111. 111.
    Koenders MI, Joosten LA, van den Berg WB (2006) Potential new targets in arthritis therapy: interleukin (IL)-17 and its relation to tumour necrosis factor and IL-1 in experimental arthritis. Ann Rheum Dis 65(Suppl 3):iii29–iii33PubMedCrossRefGoogle Scholar
  112. 112.
    Smolen JS, Maini RN (2006) Interleukin-6: a new therapeutic target. Arthritis Res Ther 8(Suppl 2):S5PubMedCrossRefGoogle Scholar
  113. 113.
    Taylor P, Patel S, Paleolog E et al (1998) Reduced synovial vascularity following TNFα blockade in RA. Arthritis Rheum 41(Suppl 1):S295Google Scholar
  114. 114.
    Tas SW, Remans PH, Reedquist KA et al (2005) Signal transduction pathways and transcription factors as therapeutic targets in inflammatory disease: towards innovative antirheumatic therapy. Curr Pharm Des 11:581–611PubMedCrossRefGoogle Scholar
  115. 115.
    Peacock DJ, Banquerigo ML, Brahn E (1992) Angiogenesis inhibition suppresses collagen arthritis. J Exp Med 175:1135–1138PubMedCrossRefGoogle Scholar
  116. 116.
    de Bandt M, Grossin M, Weber AJ et al (2000) Suppression of arthritis and protection from bone destruction by treatment with TNP-470/AGM-1470 in a transgenic mouse model of rheumatoid arthritis. Arthritis Rheum 43:2056–2063PubMedCrossRefGoogle Scholar
  117. 117.
    Arsenault AL, Lhotak S, Hunter WL et al (1998) Taxol involution of collagen-induced arthritis: ultrastructural correlation with the inhibition of synovitis and neovascularization. Clin Immunol Immunopathol 86:280–289PubMedCrossRefGoogle Scholar
  118. 118.
    Oliver SJ, Cheng TP, Banquerigo ML et al (1998) The effect of thalidomide and 2 analogs on collagen induced arthritis. J Rheumatol 25:964–969PubMedGoogle Scholar
  119. 119.
    Koch AE (2003) Angiogenesis as a target in rheumatoid arthritis. Ann Rheum Dis 62(Suppl 2):ii60–ii67PubMedGoogle Scholar
  120. 120.
    Miotla J, Maciewicz R, Kendrew J et al (2000) Treatment with soluble VEGF receptor reduces disease severity in murine collagen-induced arthritis. Lab Invest 80:1195–1205PubMedCrossRefGoogle Scholar
  121. 121.
    Lu J, Kasama T, Kobayashi K et al (2000) Vascular endothelial growth factor expression and regulation of murine collagen-induced arthritis. J Immunol 164:5922–5927PubMedGoogle Scholar
  122. 122.
    Sone H, Kawakami Y, Sakauchi M et al (2001) Neutralization of vascular endothelial growth factor prevents collagen-induced arthritis and ameliorates established disease in mice. Biochem Biophys Res Commun 281:562–568PubMedCrossRefGoogle Scholar
  123. 123.
    Murakami M, Iwai S, Hiratsuka S et al (2006) Signaling of vascular endothelial growth factor receptor-1 tyrosine kinase promotes rheumatoid arthritis through activation of monocytes/macrophages. Blood 108:1849–1856PubMedCrossRefGoogle Scholar
  124. 124.
    Koch AE (2000) The role of angiogenesis in rheumatoid arthritis: recent developments. Ann Rheum Dis 59(Suppl 1):i65–i71PubMedCrossRefGoogle Scholar
  125. 125.
    Park YW, Kang YM, Butterfield J et al (2004) Thrombospondin 2 functions as an endogenous regulator of angiogenesis and inflammation in rheumatoid arthritis. Am J Pathol 165:2087–2098PubMedGoogle Scholar
  126. 126.
    Storgard CM, Stupack DG, Jonczyk A et al (1999) Decreased angiogenesis and arthritic disease in rabbits treated with an alphavbeta3 antagonist. J Clin Invest 103:47–54PubMedGoogle Scholar
  127. 127.
    Wilder RL (2002) Integrin alpha V beta 3 as a target for treatment of rheumatoid arthritis and related rheumatic diseases. Ann Rheum Dis 61(Suppl 2):ii96–ii99PubMedGoogle Scholar
  128. 128.
    Miller WH, Keenan RM, Willette RN (2000) Identification and in vivo efficacy of small-molecule antagonists of integrin alphavbeta3 (the vitronectin receptor). Drug Discov Today 5:397–408PubMedCrossRefGoogle Scholar
  129. 129.
    Afuwape AO, Feldmann M, Paleolog EM (2003) Adenoviral delivery of soluble VEGF receptor 1 (sFlt-1) abrogates disease activity in murine collagen-induced arthritis. Gene Ther 10:1950–1960PubMedCrossRefGoogle Scholar
  130. 130.
    Creamer P, Hochberg MC (1997) Osteoarthritis. Lancet 350:503–508PubMedCrossRefGoogle Scholar
  131. 131.
    Smith MD, Triantafillou S, Parker A et al (1997) Synovial membrane inflammation and cytokine production in patients with early osteoarthritis. J Rheumatol 24:365–371PubMedGoogle Scholar
  132. 132.
    Benito MJ, Veale DJ, FitzGerald O et al (2005) Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis 64:1263–1267PubMedCrossRefGoogle Scholar
  133. 133.
    Myers SL, Brandt KD, Ehlich JW et al (1990) Synovial inflammation in patients with early osteoarthritis of the knee. J Rheumatol 17:1662–1669PubMedGoogle Scholar
  134. 134.
    Brooks P (2003) Inflammation as an important feature of osteoarthritis. Bull World Health Organ 81:689–690PubMedGoogle Scholar
  135. 135.
    Spector TD, Hart DJ, Nandra D et al (1997) Low-level increases in serum C-reactive protein are present in early osteoarthritis of the knee and predict progressive disease. Arthritis Rheum 40:723–727PubMedCrossRefGoogle Scholar
  136. 136.
    Conrozier T, Chappuis-Cellier C, Richard M et al (1998) Increased serum C-reactive protein levels by immunonephelometry in patients with rapidly destructive hip osteoarthritis. Rev Rheum Engl Ed 65:759–765Google Scholar
  137. 137.
    Honorati MC, Neri S, Cattini L, Facchini A (2006) Interleukin-17, a regulator of angiogenic factor release by synovial fibroblasts. Osteoarthritis Cartil 14:345–352CrossRefGoogle Scholar
  138. 138.
    Sandy JD (2003) Proteolytic degradation of normal and osteoarthritic cartilage matrix. In: Brandt KD, Doherty M, Lohmander LS (eds) Osteoarthritis. Oxford University Press, New York, pp 82–91Google Scholar
  139. 139.
    Raisz LG (1999) Prostaglandins and bone: physiology and pathophysiology. Osteoarthritis Cartil 7:419–421CrossRefGoogle Scholar
  140. 140.
    Brune K (2004) Safety of anti-inflammatory treatment – new ways of thinking. Rheumatology (Oxford) 43(Suppl 1):i16–i20CrossRefGoogle Scholar
  141. 141.
    Haywood L, McWilliams DF, Pearson CI et al (2003) Inflammation and angiogenesis in osteoarthritis. Arthritis Rheum 48:2173–2177PubMedCrossRefGoogle Scholar
  142. 142.
    Haynes MK, Hume EL, Smith JB (2002) Phenotypic characterization of inflammatory cells from osteoarthritic synovium and synovial fluids. Clin Immunol 105:315–325PubMedCrossRefGoogle Scholar
  143. 143.
    Ben AP, Crofford LJ, Wilder RL et al (1995) Induction of vascular endothelial growth factor expression in synovial fibroblasts by prostaglandin E and interleukin-1: a potential mechanism for inflammatory angiogenesis. FEBS Lett 372:83–87CrossRefGoogle Scholar
  144. 144.
    Lingen MW (2001) Role of leukocytes and endothelial cells in the development of angiogenesis in inflammation and wound healing. Arch Pathol Lab Med 125:67–71PubMedGoogle Scholar
  145. 145.
    Giatromanolaki A, Sivridis E, Athanassou N et al (2001) The angiogenic pathway “vascular endothelial growth factor/flk-1(KDR)-receptor” in rheumatoid arthritis and osteoarthritis. J Pathol 194:101–108PubMedCrossRefGoogle Scholar
  146. 146.
    Bunn HF, Poyton RO (1996) Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76:839–885PubMedGoogle Scholar
  147. 147.
    Jackson JR, Minton JA, Ho ML et al (1997) Expression of vascular endothelial growth factor in synovial fibroblasts is induced by hypoxia and interleukin 1beta. J Rheumatol 24:1253–1259PubMedGoogle Scholar
  148. 148.
    Steinmeyer J, Konttinen YT (2006) Oral treatment options for degenerative joint disease-presence and future. Adv Drug Deliv Rev 58:168–211PubMedCrossRefGoogle Scholar
  149. 149.
    Steinmeyer J (2004) Cytokines in osteoarthritis-current status on the pharmacological intervention. Front Biosci 9:575–580PubMedCrossRefGoogle Scholar
  150. 150.
    Gaya DR, Russell RK, Nimmo N et al (2006) New genes in inflammatory bowel disease: lessons for complex disease? Lancet 367:1271–1284PubMedCrossRefGoogle Scholar
  151. 151.
    Okamoto R, Watanabe M (2005) Cellular and molecular mechanisms of the epithelial repair in IBD. Dig Dis Sci 50(Suppl 1):S34PubMedCrossRefGoogle Scholar
  152. 152.
    Cordiali-Fei P, Trento E, D’Agosto G et al (2006) Decreased levels of metalloproteinase-9 and angiogenic factors in skin lesions of patients with psoriatic arthritis after therapy with anti-TNF-α. J Autoimmune Dis 3:5PubMedCrossRefGoogle Scholar
  153. 153.
    Kapsoritakis A, Sfiridaki A, Maltezos E et al (2003) Vascular endothelial growth factor in inflammatory bowel disease. Int J Colorectal Dis 18:418–422PubMedCrossRefGoogle Scholar
  154. 154.
    Girardin SE, Hugot JP, Sansonetti PJ (2003) Lessons from Nod2 studies: towards a link between Crohn’s disease and bacterial sensing. Trends Immunol 24:652–658PubMedCrossRefGoogle Scholar
  155. 155.
    Ina K, Itoh J, Fukushima K et al (1999) Resistance of Crohn’s disease T cells to multiple apoptotic signals is associated with a bcl-2/Bax mucosal imbalance. J Immunol 163:1081–1090PubMedGoogle Scholar
  156. 156.
    Pizarro TT, Michie MH, Bentz M et al (1999) IL-18, a novel immunoregulatory cytokine, is up-regulated in Crohn’s disease: expression and localization in intestinal mucosal cells. J Immunol 162:6829–6835PubMedGoogle Scholar
  157. 157.
    Pallone F, Monteleone G (2001) Mechanisms of tissue damage in inflammatory bowel disease. Curr Opin Gastroenterol 17:307–312PubMedCrossRefGoogle Scholar
  158. 158.
    Bonen DK, Ogura Y, Nicolae DL et al (2003) Crohn’s disease-associated NOD2 variants share a signaling defect in response to peptidoglycan. Gastroenterology 124:140–146PubMedCrossRefGoogle Scholar
  159. 159.
    Majno G (1998) Chronic inflammation-links with angiogenesis and wound healing. Am J Pathol 153:1035–1039PubMedGoogle Scholar
  160. 160.
    Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660PubMedCrossRefGoogle Scholar
  161. 161.
    Hatoum OA, Binion DG (2005) The vasculature and inflammatory bowel disease: contribution to pathogenesis and clinical pathology. Inflamm Bowel Dis 11:304–313PubMedCrossRefGoogle Scholar
  162. 162.
    Saito S, Tsuno NH, Sunami E et al (2003) Expression of platelet-derived endothelial cell growth factor in inflammatory bowel disease. J Gastroenterol 38:229–237PubMedCrossRefGoogle Scholar
  163. 163.
    Hatoum OA, Binion DG, Otterson MF, Gutterman DD (2003) Acquired microvascular dysfunction in inflammatory bowel disease: Loss of nitric oxide-mediated vasodilation. Gastroenterology 125:58–69PubMedCrossRefGoogle Scholar
  164. 164.
    Steinhart AH, Ewe K, Griffiths AM et al (2003) Corticosteroids for maintenance of remission in Crohns disease. Cochrane Database Syst Rev 4:CD000301PubMedGoogle Scholar
  165. 165.
    Dubinsky MC (2004) Azathioprine, 6-mercaptopurine in inflammatory bowel disease: pharmacology, efficacy and safety. Clin Gastroenterol Hepatol 2:731–743PubMedCrossRefGoogle Scholar
  166. 166.
    Alfadhli AA, McDonald JW, Feagan BG (2005) Methotrexate for induction of remission in refractory Crohn’s disease. Cochrane Database Syst Rev 4:CD003459Google Scholar
  167. 167.
    Lowenberg M, Peppelenbosch M, Hommes D (2006) Biological therapy in the management of recent-onset Crohn’s disease: why, when and how? Drugs 66:1431–1439PubMedCrossRefGoogle Scholar
  168. 168.
    Ginsburg PM, Dassopoulos T, Ehrenpreis ED (2001) Thalidomide treatment for refractory Crohn’s disease: a review of the history, pharmacological mechanisms and clinical literature. Ann Med 33:516–525PubMedGoogle Scholar
  169. 169.
    Ghosh S, Chaudhary R, Carpani M et al (2006) Interfering with interferons in inflammatory bowel disease. Gut 55:1071–1073PubMedCrossRefGoogle Scholar
  170. 170.
    Feagan BG, Greenberg GR, Wild G et al (2005) Treatment of ulcerative colitis with a humanized antibody to the alpha4beta7 integrin. N Engl J Med 352:2499–2507PubMedCrossRefGoogle Scholar
  171. 171.
    Danese S, Semeraro S, Armuzzi A et al (2006) Biological therapies for inflammatory bowel disease: research drives clinics. Mini Rev Med Chem 6:771–784PubMedCrossRefGoogle Scholar
  172. 172.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  173. 173.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867PubMedCrossRefGoogle Scholar
  174. 174.
    Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–217PubMedCrossRefGoogle Scholar
  175. 175.
    Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545PubMedCrossRefGoogle Scholar
  176. 176.
    Christen S, Hagen TM, Shigenaga MK et al (1999) Microbes and malignancy: infection as a cause of human cancers. Oxford University Press, Oxford, p 35Google Scholar
  177. 177.
    Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759PubMedCrossRefGoogle Scholar
  178. 178.
    de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6:24–37PubMedCrossRefGoogle Scholar
  179. 179.
    Dannenberg AJ, Subbaramaiah K (2003) Targeting cyclooxygenase-2 in human neoplasia: rationale and promise. Cancer Cell 4:431–436PubMedCrossRefGoogle Scholar
  180. 180.
    Clevers H (2004) At the crossroads of inflammation and cancer. Cell 118:671–674PubMedCrossRefGoogle Scholar
  181. 181.
    Sica A, Schioppa T, Mantovani A et al (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42:717–727PubMedCrossRefGoogle Scholar
  182. 182.
    Yoshimura A (2006) Signal transduction of inflammatory cytokines and tumor development. Cancer Sci 97:439–447PubMedCrossRefGoogle Scholar
  183. 183.
    Saijo Y, Tanaka M, Miki M et al (2002) Proinflammatory cytokine IL-1β promotes tumor growth of lewis lung carcinoma by induction of angiogenic factors: in vivo analysis of tumor-stromal interaction. J Immunol 169:469–475PubMedGoogle Scholar
  184. 184.
    Balkwill F (2006) TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev 25:409–416PubMedCrossRefGoogle Scholar
  185. 185.
    Coussens LM, Tinkle CL, Hanahan DH et al (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103:481–490PubMedCrossRefGoogle Scholar
  186. 186.
    Esposito I, Menicagli M, Funel N et al (2004) Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma. J Clin Pathol 57:630–636PubMedCrossRefGoogle Scholar
  187. 187.
    Tsujii M, Kawano S, Tsuji S et al (1998) Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93:705–716PubMedCrossRefGoogle Scholar
  188. 188.
    Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2:795–803PubMedCrossRefGoogle Scholar
  189. 189.
    Ferrara N, Alitalo K (1999) Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 5:359–364CrossRefGoogle Scholar
  190. 190.
    Sang QX, Jin Y, Newcomer RG et al (2006) Matrix metalloproteinase inhibitors as prospective agents for the prevention and treatment of cardiovascular and neoplastic diseases. Curr Top Med Chem 6:289–316PubMedCrossRefGoogle Scholar
  191. 191.
    Wadler S (2007) Targeted therapy in colorectal cancer. Clin Colorectal Cancer 6:357–361PubMedCrossRefGoogle Scholar
  192. 192.
    Flis S, Soltysiak-Pawluczuk D, Jedrych A et al (2006) Antiangiogenic effect of sulindac sulfide could be secondary to induction of apoptosis and cell cycle arrest. Anticancer Res 26:3033–3041PubMedGoogle Scholar
  193. 193.
    Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867PubMedCrossRefGoogle Scholar
  194. 194.
    Kerner A, Avizohar O, Sella R et al (2005) Association between elevated liver enzymes and c-reactive protein: possible hepatic contribution to systemic inflammation in the metabolic syndrome. Arterioscler Thromb Vasc Biol 25:193–197PubMedGoogle Scholar
  195. 195.
    Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874PubMedCrossRefGoogle Scholar
  196. 196.
    Goudriaan JR, Tacken PJ, Dahlmans VE et al (2001) Protection from obesity in mice lacking the VLDL receptor. Arterioscler Thromb Vasc Biol 21:1488–1493PubMedGoogle Scholar
  197. 197.
    Mikhailenko I, Krylov D, Argraves KM et al (1997) Cellular internalization and degradation of thrombospondin-1 is mediated by the amino-terminal heparin binding domain (HBD). High affinity interaction of dimeric HBD with the low density lipoprotein receptor-related protein. J Biol Chem 272:6784–6791PubMedCrossRefGoogle Scholar
  198. 198.
    Argraves KM, Battey FD, MacCalman CD et al (1995) The very low density lipoprotein receptor mediates the cellular catabolism of lipoprotein lipase and urokinase-plasminogen activator inhibitor type I complexes. J Biol Chem 270:26550PubMedCrossRefGoogle Scholar
  199. 199.
    Kasza A, Petersen HH, Heegaard CW et al (1997) Specifity of serine proteinase/serpin complex binding to very-low-density lipoprotein receptor and α2-macroglobulin receptor/low-density-lipoprotein-receptor-related protein. Eur J Biochem 248:270–281PubMedCrossRefGoogle Scholar
  200. 200.
    Hembrough TA, Ruiz JF, Swerdlow BM et al (2004) Identification and characterization of a very low density lipoprotein receptor-binding peptide from tissue factor pathway inhibitor that has antitumor and antiangiogenic activity. Blood 103:3374–3380PubMedCrossRefGoogle Scholar
  201. 201.
    Vettor R, Milan G, Rossato M et al (2005) Review article: adipocytokines and insulin resistance. Aliment Pharmacol Ther 22(Suppl 2):3–10PubMedCrossRefGoogle Scholar
  202. 202.
    Monteiro R, de Castro PM, Calhau C et al (2006) Adipocyte size and liability to cell death. Obes Surg 16:804–806PubMedCrossRefGoogle Scholar
  203. 203.
    Cinti S, Mitchell G, Barbatelli G et al (2005) Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 46:2347–2355PubMedCrossRefGoogle Scholar
  204. 204.
    Rupnick MA, Panigrahy D, Zhang CY et al (2002) Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci USA 99:10730–10735PubMedCrossRefGoogle Scholar
  205. 205.
    Rose DP, Komninou D, Stephenson GD (2004) Obesity, adipocytokines, and insulin resistance in breast cancer. Obes Rev 5:153–165PubMedCrossRefGoogle Scholar
  206. 206.
    Fukumura D, Ushiyama A, Duda DG et al (2003) Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. Circ Res 93:88–97CrossRefGoogle Scholar
  207. 207.
    Leonhardt M, Hrupka B, Langhans W (1999) New approaches in the pharmacological treatment of obesity. Eur J Nutr 38:1–13PubMedCrossRefGoogle Scholar
  208. 208.
    Bray GA (1999) Overweight is risking fate. J Clin Endocrinol Metab 84:10–12CrossRefGoogle Scholar
  209. 209.
    Kolonin MG, Saha PK, Chan L, Pasqualini R, Arap W (2004) Reversal of obesity by targeted ablation of adipose tissue. Nat Med 10:625–632PubMedCrossRefGoogle Scholar
  210. 210.
    Simons M (2005) Angiogenesis, arteriogenesis, and diabetes paradigm reassessed? J Am Coll Cardiol 46:835–837PubMedCrossRefGoogle Scholar
  211. 211.
    Waltenberger J, Lange J, Kranz A (2000) Vascular endothelial growth factor-A-induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus. A potential predictor for the individual capacity to develop collaterals. Circulation 102:185–190PubMedGoogle Scholar
  212. 212.
    Adamis AP, Aiello LP, D’Amato RA (1999) Angiogenesis and ophthalmic disease. Angiogenesis 3:9–14PubMedCrossRefGoogle Scholar
  213. 213.
    Duraisamy Y, Slevin M, Smith N et al (2001) Effect of glycation on basic fibroblast growth factor induced angiogenesis and activation of associated signal transduction pathways in vascular endothelial cells: possible relevance to wound healing in diabetes. Angiogenesis 4:277–288PubMedCrossRefGoogle Scholar
  214. 214.
    Schmidt AM, Yan SD, Wautier J-L et al (1999) Activation of Receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis. Circ Res 84:489–497PubMedGoogle Scholar
  215. 215.
    Lebovitz HE (2006) Therapeutic options in development for management of diabetes: pharmacologic agents and new technologies. Endocr Pract 12(Suppl 1):142–147PubMedGoogle Scholar
  216. 216.
    Pandya NM, Dhalla NS, Santani DD (2006) Angiogenesis – a new target for future therapy. Vascul Pharmacol 44:265–274PubMedCrossRefGoogle Scholar
  217. 217.
    Steed DL (2006) Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity ulcers. Plast Reconstr Surg 117(7 Suppl):143S–149SPubMedCrossRefGoogle Scholar
  218. 218.
    Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143PubMedCrossRefGoogle Scholar
  219. 219.
    Hansson G (2005) Inflammation, atherosclerosis, and coronary artery disease. New Engl J Med 352:1685–1695PubMedCrossRefGoogle Scholar
  220. 220.
    Weber C (2005) Platelets and chemokines in atherosclerosis: partners in crime. Circ Res 96:612–616PubMedCrossRefGoogle Scholar
  221. 221.
    Moulton KS, Heller E, Konerding MA et al (1999) Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation 99:1726–1732PubMedGoogle Scholar
  222. 222.
    Bresalier RS, SandlerRS, Quan H et al (2005) Adenomatous polyp prevention on Vioxx (approve) trial investigators. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. New Engl J Med 352:1092–1102PubMedCrossRefGoogle Scholar
  223. 223.
    Crisby M, Nordin-Fredriksson G, Shah PK et al (2001) Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques. Implications for plaque stabilization. Circulation 103:926–933PubMedGoogle Scholar
  224. 224.
    Veillard NR, Braunersreuther V, Arnaud C et al (2006) Simvastatin modulates chemokine and chemokine receptor expression by geranylgeranyl isoprenoid pathway in human endothelial cells and macrophages. Atherosclerosis 188:51–58PubMedCrossRefGoogle Scholar
  225. 225.
    Clarke MC, Figg N, Maguire J et al (2006) Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat Med 12:1075–1080PubMedCrossRefGoogle Scholar
  226. 226.
    Schaub FJ, Han DK, Liles WC et al (2000) Fas/FADD-mediated activation of a specific program of inflammatory gene expression in vascular smooth muscle cells. Nat Med 6:790–796PubMedCrossRefGoogle Scholar
  227. 227.
    Folkman J (2001) Angiogenesis. In: Jameson JL, Braunwald E, Fauci AS, Kasper DL, Hauser SL, Longo DL (eds) Harrison’s principles of internal medicine, 15th edn. McGraw-Hill, USAGoogle Scholar
  228. 228.
    Zhang SX, Ma JX (2007) Ocular neovascularization: implication of endogenous angiogenic inhibitors and potential therapy. Prog Retin Eye Res 26:1–37PubMedCrossRefGoogle Scholar
  229. 229.
    Sakurai E, Anand A, Ambati BK et al (2003) Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44:3578–3585PubMedCrossRefGoogle Scholar
  230. 230.
    Bora P, Sohn J, Cruz J et al (2005) Role of complement and complement membrane attack complex in laser-induced choroidal neovascularization. J Immunol 174:491–497PubMedGoogle Scholar
  231. 231.
    Mitamura Y, Takeuchi S, Matsuda A et al (2001) Monocyte chemotactic protein-1 in the vitreous of patients with proliferative diabetic retinopathy. Ophthalmologica 215:415–418PubMedCrossRefGoogle Scholar
  232. 232.
    Chang TS, Tonnu IQ, Globe DR et al (2004) Longitudinal changes in self-reported visual functioning in AMD patients in a randomized controlled phase I/II trial of Lucentis™ (ranibizumab; rHuFABv2). Invest Ophthalmol Vis Sci 45:E3098CrossRefGoogle Scholar
  233. 233.
    Eugene WM, Adamis AP (2005) Targeting angiogenesis, the underlying disorder in neovascular age-related macular degeneratio. Can J Ophthalmol 40:352–368Google Scholar
  234. 234.
    Steinbrook R (2006) The price of sight-ranibizumab, bevacizumab, and the treatment of macular degeneration. N Engl J Med 355:1409–1412PubMedCrossRefGoogle Scholar
  235. 235.
    Ciulla TA, Criswell MH, Danis RP et al (2001) Intravitreal triamcinolone acetonide inhibits choroidal neovascularization in a laser-treated rat model. Arch Ophthalmol 119:399–404PubMedGoogle Scholar
  236. 236.
    Markomichelakis NN, Theodossiadis PG, Sfikakis PP (2005) Regression of neovascular age-related macular degeneration following infliximab therapy. Am J Ophthalmol 139:537–540PubMedCrossRefGoogle Scholar
  237. 237.
    Soares R, Azevedo I (2007) Inhibition of S1P by polyphenols prevents inflammation and angiogenesis: NFkappaB, a downstream effector? Free Radic Biol Med 42:311PubMedCrossRefGoogle Scholar
  238. 238.
    Soares R, Azevedo I (2006) Apigenin: is it a pro- or anti-inflammatory agent? Am J Pathol 168:1762–1763PubMedCrossRefGoogle Scholar
  239. 239.
    Monteiro R, Guerreiro S, Soares R et al (2006) FASEB J Suppl: A568Google Scholar
  240. 240.
    Incio J, Lopes R, Azevedo I et al (2006) Prevention of both angio and atherogenesis: inhibitory properties of polyphenols (Xanthumol) in smooth muscle cells. Eur J Med Res 11(Suppl II):122Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.Laboratory for Molecular Cell BiologyFaculty of Medicine of the University of PortoPortoPortugal
  2. 2.Institute for Molecular and Cell Biology (IBMC)PortoPortugal
  3. 3.iSEX, Association for the advanced study of human sexualityLisbonPortugal
  4. 4.Department of BiochemistryFaculty of Medicine of the University of PortoPortoPortugal

Personalised recommendations