, Volume 10, Issue 2, pp 89–101 | Cite as

Progenitor cells and retinal angiogenesis

  • Martin FriedlanderEmail author
  • Michael I. Dorrell
  • Matthew R. Ritter
  • Valentina Marchetti
  • Stacey K. Moreno
  • Mohammad El-Kalay
  • Alan C. Bird
  • Eyal Banin
  • Edith Aguilar
Original Paper


Nothing more dramatically captures the imagination of the visually impaired patient or the ophthalmologist treating them than the possibility of rebuilding a damaged retina or vasculature with “stem cells.” Stem cells (SC) have been isolated from adult tissues and represent a pool of cells that may serve to facilitate rescue/repair of damaged tissue following injury or stress. We propose a new paradigm to “mature” otherwise immature neovasculature or, better yet, stabilize existing vasculature to hypoxic damage. This may be possible through the use of autologous bone marrow (BM) or cord blood derived hematopoietic SC that selectively target sites of neovascularization and gliosis where they provide vasculo- and neurotrophic effects. We have demonstrated that adult BM contains a population of endothelial and myeloid progenitor cells that can target activated astrocytes, a hallmark of many ocular diseases, and participate in normal developmental, or injury-induced, angiogenesis in the adult. Intravitreal injection of these cells from mice and humans can prevent retinal vascular degeneration ordinarily observed in mouse models of retinal degeneration; this vascular rescue correlates with functional neuronal rescue as well. The use of autologous adult BM derived SC grafts for the treatment of retinal vascular and degenerative diseases represents a novel conceptual approach that may make it possible to “mature” otherwise immature neovasculature, stabilize existing vasculature to hypoxic damage and/or rescue and protect retinal neurons from undergoing apoptosis. Such a therapeutic approach would obviate the need to employ destructive treatment modalities and would facilitate vascularization of ischemic and otherwise damaged retinal tissue.


Ocular angiogenesis Cell therapies Stem cells Progenitors 



We are very grateful to the members of the Friedlander laboratory and many colleagues at Scripps and other institutions, who have challenged us to think critically and move in uncharted directions over the years. Dr. Sheila Friedlander provided many helpful and critical comments in the preparation of this manuscript. The research cited in this work from our laboratory has been generously supported by the National Eye Institute of the National Institutes of Health, the MacTel Foundation, the V. Kann Rassmusen Foundation, the Scripps Fonseca/Mericos Fund and Merck KGaA.


  1. 1.
    LeCouter J et al (2003) Angiogenesis-independent endothelial protection of liver: role of VEGFR-1. Science 299(5608):890–893PubMedCrossRefGoogle Scholar
  2. 2.
    Matsumoto K et al (2001) Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294(5542):559–563PubMedCrossRefGoogle Scholar
  3. 3.
    Otani A et al (2004) Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage negative hematopoietic stem cells. J Clin Invest 114(6):765–774PubMedCrossRefGoogle Scholar
  4. 4.
    Shen Q et al (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304(5675):1338–1340PubMedCrossRefGoogle Scholar
  5. 5.
    Fidler IJ, Ellis LM (1994) The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell 79(2):185–188PubMedCrossRefGoogle Scholar
  6. 6.
    Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27–31PubMedCrossRefGoogle Scholar
  7. 7.
    Aiello LP (1997) Vascular endothelial growth factor and the eye: biochemical mechanisms of action and implications for novel therapies. Ophthalmic Res 29(5):354–362PubMedCrossRefGoogle Scholar
  8. 8.
    Miller JW (1997) Vascular endothelial growth factor and ocular neovascularization. Am J Pathol 151(1):13–23PubMedGoogle Scholar
  9. 9.
    Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267(16):10931–10934PubMedGoogle Scholar
  10. 10.
    Ashton N (1963) Studies of the retinal capillaries in relation to diabetic and other retinopathies. Br J Ophthalmol 47:521–538PubMedGoogle Scholar
  11. 11.
    Cogan DG, Toussaint D, Kuwabara T (1961) Retinal vascular patterns. IV. Diabetic retinopathy. Arch Ophthalmol 66:366–378PubMedGoogle Scholar
  12. 12.
    Porta M et al (1981) Evidence for functional endothelial cell damage in early diabetic retinopathy. Diabetologia 20(6):597–601PubMedCrossRefGoogle Scholar
  13. 13.
    Photocoagulation treatment of proliferative diabetic retinopathy. (1981) Clinical application of diabetic retinopathy study (DRS) findings, DRS report number 8. The diabetic retinopathy study research group. Ophthalmology 88(7):583–600Google Scholar
  14. 14.
    Group ETDRSR (1991) Early Photocoagulation for diabetic retinopathy. Ophthalmology 98:766–785Google Scholar
  15. 15.
    Clover GM (1984) Laser treatment of diabetic maculopathy and the implications for retinal vascular barriers in Ophthalmology. London University, LondonGoogle Scholar
  16. 16.
    Haritoglou C et al (2006) Intravitreal bevacizumab (Avastin) therapy for persistent diffuse diabetic macular edema. Retina 26(9):999–1005PubMedCrossRefGoogle Scholar
  17. 17.
    Mason JO 3rd, Nixon PA, White MF (2006) Intravitreal injection of bevacizumab (Avastin) as adjunctive treatment of proliferative diabetic retinopathy. Am J Ophthalmol 142(4):685–688PubMedCrossRefGoogle Scholar
  18. 18.
    Massin P et al (2004) Intravitreal triamcinolone acetonide for diabetic diffuse macular edema: preliminary results of a prospective controlled trial. Ophthalmology 111(2):218–224 discussion 224–225PubMedCrossRefGoogle Scholar
  19. 19.
    Iturralde D et al (2006) Intravitreal bevacizumab (Avastin) treatment of macular edema in central retinal vein occlusion: a short-term study. Retina 26(3):279–284PubMedCrossRefGoogle Scholar
  20. 20.
    Sydorova M, Lee MS (2005) Vascular endothelial growth factor levels in vitreous and serum of patients with either proliferative diabetic retinopathy or proliferative vitreoretinopathy. Ophthalmic Res 37(4):188–190PubMedCrossRefGoogle Scholar
  21. 21.
    McKay RD (2004) Stem cell biology and neurodegenerative disease. Philos Trans R Soc Lond B Biol Sci 359(1445):851–856PubMedCrossRefGoogle Scholar
  22. 22.
    Asakura A (2003) Stem cells in adult skeletal muscle. Trends Cardiovasc Med 13(3):123–128PubMedCrossRefGoogle Scholar
  23. 23.
    Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9(6):702–712PubMedCrossRefGoogle Scholar
  24. 24.
    Yamashita JK (2004) Differentiation and diversification of vascular cells from embryonic stem cells. Int J Hematol 80(1):1–6PubMedCrossRefGoogle Scholar
  25. 25.
    Friedlander M (2006) Stem Cells. In: Ryan SJ (eds) Retina. Elsevier Mosby, Los Angeles, pp 23–32Google Scholar
  26. 26.
    Asahara T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967PubMedCrossRefGoogle Scholar
  27. 27.
    Gill M et al (2001) Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circ Res 88(2):167–174PubMedGoogle Scholar
  28. 28.
    Kalka C et al (2000) VEGF gene transfer mobilizes endothelial progenitor cells in patients with inoperable coronary disease. Ann Thorac Surg 70(3):829–834PubMedCrossRefGoogle Scholar
  29. 29.
    Kocher AA et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7(4):430–436PubMedCrossRefGoogle Scholar
  30. 30.
    Grant MB et al (2002) Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 8(6):607–612PubMedCrossRefGoogle Scholar
  31. 31.
    Otani A et al (2002) Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nat Med 8(9):1004–1010PubMedCrossRefGoogle Scholar
  32. 32.
    Grant MB et al (2003) The contribution of adult hematopoietic stem cells to retinal neovascularization. Adv Exp Med Biol 522:37–45PubMedGoogle Scholar
  33. 33.
    Csaky KG et al (2004) Recruitment of marrow-derived endothelial cells to experimental choroidal neovascularization by local expression of vascular endothelial growth factor. Exp Eye Res 78(6):1107–1116PubMedCrossRefGoogle Scholar
  34. 34.
    Espinosa-Heidmann DG et al (2003) Bone marrow-derived progenitor cells contribute to experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44(11):4914–4919PubMedCrossRefGoogle Scholar
  35. 35.
    Sengupta N et al (2003) The role of adult bone marrow-derived stem cells in choroidal neovascularization. Invest Ophthalmol Vis Sci 44(11):4908–4913PubMedCrossRefGoogle Scholar
  36. 36.
    Filip SMJ, Karbanova J, Vavrova J, English D (2004) Local environmental factors determine hematopoietic differentiation of neural stem cells. Stem Cells Dev 13(1):113–120PubMedCrossRefGoogle Scholar
  37. 37.
    Laflamme MA, Murry CE (2005) Regenerating the heart. Nat Biotechnol 23(7):845–856PubMedCrossRefGoogle Scholar
  38. 38.
    Grunewald M et al (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124(1):175–189PubMedCrossRefGoogle Scholar
  39. 39.
    Jin DK et al (2006) Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med 12(5):557–567PubMedCrossRefGoogle Scholar
  40. 40.
    Ritter MR et al (2006) Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy. J Clin Invest 116:3266–3276PubMedCrossRefGoogle Scholar
  41. 41.
    Clausen BE et al (1999) Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res 8(4):265–277PubMedCrossRefGoogle Scholar
  42. 42.
    Cramer T et al (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112(5):645–657PubMedCrossRefGoogle Scholar
  43. 43.
    Checchin D et al (2006) Potential role of microglia in retinal blood vessel formation. Invest Ophthalmol Vis Sci 47(8):3595–3602PubMedCrossRefGoogle Scholar
  44. 44.
    Flamme I, Frolich T, Risau W (1997) Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol 173(2):206–210PubMedCrossRefGoogle Scholar
  45. 45.
    Ferrara N (1999) Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int 56(3):794–814PubMedCrossRefGoogle Scholar
  46. 46.
    Tepper OM et al (2005) Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood 105(3):1068–1077PubMedCrossRefGoogle Scholar
  47. 47.
    McKenney JK, Weiss SW, Folpe AL (2001) CD31 expression in intratumoral macrophages: a potential diagnostic pitfall. Am J Surg Pathol 25(9):1167–1173PubMedCrossRefGoogle Scholar
  48. 48.
    Miettinen M, Lindenmayer AE, Chaubal A (1994) Endothelial cell markers CD31, CD34, and BNH9 antibody to H- and Y-antigens–evaluation of their specificity and sensitivity in the diagnosis of vascular tumors and comparison with von Willebrand factor. Mod Pathol 7(1):82–90PubMedGoogle Scholar
  49. 49.
    Kreipe H et al (1986) Lectin binding and surface glycoprotein pattern of human macrophage populations. Histochemistry 86(2):201–206PubMedCrossRefGoogle Scholar
  50. 50.
    Lougheed M et al (1999) Uptake of oxidized LDL by macrophages differs from that of acetyl LDL and leads to expansion of an acidic endolysosomal compartment. Arterioscler Thromb Vasc Biol 19(8):1881–1890PubMedGoogle Scholar
  51. 51.
    Rocha V, Gluckman E (2006) Clinical use of umbilical cord blood hematopoietic stem cells. Biol Blood Marrow Transplant 12(1 Suppl 1):34–41PubMedCrossRefGoogle Scholar
  52. 52.
    Broxmeyer HE (2005) Biology of cord blood cells and future prospects for enhanced clinical benefit. Cytotherapy 7(3):209–218PubMedCrossRefGoogle Scholar
  53. 53.
    Nakahata T, Ogawa M (1982) Hemopoietic colony-forming cells in umbilical cord blood with extensive capability to generate mono- and multipotential hemopoietic progenitors. J Clin Invest 70(6):1324–81328PubMedCrossRefGoogle Scholar
  54. 54.
    Broxmeyer HE et al (1989) Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA 86(10):3828–3832PubMedCrossRefGoogle Scholar
  55. 55.
    Cardoso AA et al (1993) Release from quiescence of CD34+ CD38− human umbilical cord blood cells reveals their potentiality to engraft adults. Proc Natl Acad Sci USA 90(18):8707–8711PubMedCrossRefGoogle Scholar
  56. 56.
    Carow CE, Hangoc G, Broxmeyer HE (1993) Human multipotential progenitor cells (CFU-GEMM) have extensive replating capacity for secondary CFU-GEMM: an effect enhanced by cord blood plasma. Blood 81(4):942–949PubMedGoogle Scholar
  57. 57.
    Aoki M, Yasutake M, Murohara T (2004) Derivation of functional endothelial progenitor cells from human umbilical cord blood mononuclear cells isolated by a novel cell filtration device. Stem Cells 22(6):994–1002PubMedCrossRefGoogle Scholar
  58. 58.
    Murohara T et al (2000) Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 105(11):1527–1536PubMedGoogle Scholar
  59. 59.
    Reyes M et al (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109(3):337–346PubMedCrossRefGoogle Scholar
  60. 60.
    Hildbrand P et al (2004) The role of angiopoietins in the development of endothelial cells from cord blood CD34+ progenitors. Blood 104(7):2010–2019PubMedCrossRefGoogle Scholar
  61. 61.
    Crisa L et al (1999) Human cord blood progenitors sustain thymic T-cell development and a novel form of angiogenesis. Blood 94(11):3928–3940PubMedGoogle Scholar
  62. 62.
    Butler JM et al (2005) SDF-1 is both necessary and sufficient to promote proliferative retinopathy. J Clin Invest 115(1):86–93PubMedCrossRefGoogle Scholar
  63. 63.
    Ceradini DJ et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10(8):858–864PubMedCrossRefGoogle Scholar
  64. 64.
    Sbaa E et al (2006) Caveolin plays a central role in endothelial progenitor cell mobilization and homing in SDF-1-driven postischemic vasculogenesis. Circ Res 98(9):1219–1227PubMedCrossRefGoogle Scholar
  65. 65.
    Dorrell MI, Aguilar E, Friedlander M (2002) Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Invest Ophthalmol Vis Sci 43(11):3500–3510PubMedGoogle Scholar
  66. 66.
    Dorrell MI et al (2004) Adult bone marrow-derived stem cells use R-cadherin to target sites of neovascularization in the developing retina. Blood 103(9):3420–3427PubMedCrossRefGoogle Scholar
  67. 67.
    Pettengell R et al (1993) Peripheral blood progenitor cell transplantation in lymphoma and leukemia using a single apheresis. Blood 82(12):3770–3777PubMedGoogle Scholar
  68. 68.
    Yamaji K, Tsuda H, Hashimoto H (2001) Current topics on cytapheresis technologies. Ther Apher 5(4):287–292PubMedCrossRefGoogle Scholar
  69. 69.
    Weaver CH et al (1993) Syngeneic transplantation with peripheral blood mononuclear cells collected after the administration of recombinant human granulocyte colony-stimulating factor. Blood 82(7):1981–1984PubMedGoogle Scholar
  70. 70.
    Boomsma RA, Swaminathan PD, Geenen DL (2006) Intravenously injected mesenchymal stem cells home to viable myocardium after coronary occlusion and preserve systolic function without altering infarct size. Int J Cardiol [Epub ahead of print]Google Scholar
  71. 71.
    Meluzin J et al (2006) Autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction: the effect of the dose of transplanted cells on myocardial function. Am Heart J 152(5):975 e9–15PubMedCrossRefGoogle Scholar
  72. 72.
    Boyle AJ et al (2006) Intra-coronary high-dose CD34+ stem cells in patients with chronic ischemic heart disease: a 12-month follow-up. Int J Cardiol 109(1):21–27PubMedCrossRefGoogle Scholar
  73. 73.
    Biosciences B BD FACSAria Technical SpecificationsGoogle Scholar
  74. 74.
    Weber JD (2004) Biosafety considerations for cell based therapies. BioPharm Int 17(7):48–61Google Scholar
  75. 75.
    Ford S, Tente WE (2001) Employing murine Mabs as ancillary products in cell therapy manufacturing. BioPharm Int 14(10):10–16Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  • Martin Friedlander
    • 1
    Email author
  • Michael I. Dorrell
    • 1
  • Matthew R. Ritter
    • 1
  • Valentina Marchetti
    • 1
  • Stacey K. Moreno
    • 1
  • Mohammad El-Kalay
    • 1
  • Alan C. Bird
    • 2
  • Eyal Banin
    • 3
  • Edith Aguilar
    • 1
  1. 1.Department of Cell BiologyThe Scripps Research InstituteLa JollaUSA
  2. 2.Institute of OphthalmologyUniversity College LondonLondonUK
  3. 3.Hadassah-Hebrew UniversityJerusalemIsrael

Personalised recommendations