, Volume 10, Issue 1, pp 35–45 | Cite as

An intimate interplay between precocious, migrating pericytes and endothelial cells governs human fetal brain angiogenesis

  • Daniela Virgintino
  • Francesco Girolamo
  • Mariella Errede
  • Carmen Capobianco
  • David Robertson
  • William B. Stallcup
  • Roberto Perris
  • Luisa Roncali
Original Paper


In order to better understand the process of angiogenesis in the developing human brain, we have examined the spatial relationship and relative contributions of endothelial cells and pericytes, the two primary cell types involved in vessel growth, together with their relation with the vascular basement membrane. Pericytes were immunolocalized through use of the specific markers nerve/glial antigen 2 (NG2) proteoglycan, endosialin (CD248) and the platelet-derived growth factor receptor β (PDGFR-β), while endothelial cells were identified by the pan-endothelial marker CD31 and the blood brain barrier (BBB)-specific markers claudin-5 and glucose transporter isoform 1 (GLUT-1). The quantitative analysis demonstrates that microvessels of the fetal human telencephalon are characterized by a continuous layer of activated/angiogenic NG2 pericytes, which tightly invest endothelial cells and participate in the earliest stages of vessel growth. Immunolabelling with anti-active matrix metalloproteinase-2 (aMMP-2) and anti-collagen type IV antibodies revealed that aMMP-2 producing endothelial cells and pericytes are both associated with the vascular basement membrane during vessel sprouting. Detailed localization of the two vascular cell types during angiogenesis suggests that growing microvessels of the human telencephalon are formed by a pericyte-driven angiogenic process in which the endothelial cells are preceded and guided by migrating pericytes during organization of the growing vessel wall.


Angiogenesis Basement membrane Endosialin Endothelial cells Human brain MMP-2 NG2 PDGFR-β Pericytes 



Active matrix metalloproteinase-2


Blocking buffer


Blood–brain barrier




Central nervous system


Extracellular matrix


Glucose transporter isoform 1


Monoclonal antibody


Nerve/glial antigen 2


Polyclonal antibody


Phosphate-buffered saline


Platelet-derived growth factor receptor β


Vascular endothelial growth factor



This work was funded by Ministero dell’Istruzione Università e Ricerca (MIUR; FIRB 2001) and Fondazione Cassa di Risparmio di Puglia (FCRP 2005) to DV. We thank Clare M. Isacke and John R. MacFayden, The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, for the generous gift of endosialin antibody. We gratefully acknowledge Mary V. C. Pragnell, BA for linguistic help, and Marisa Ambrosi, Antonella Grano, and Loredana Lorusso for their excellent technical assistance.


  1. 1.
    Risau W (1993) Development of vascular system of organs and tissue. In: Shaper W, Shaper J (eds) Collateral circulation. Kluwer Academic, NorwellGoogle Scholar
  2. 2.
    Kuban KCK, Gilles FH (1985) Human telencephalic angiogenesis. Ann Neurol 17:539–548PubMedCrossRefGoogle Scholar
  3. 3.
    Norman MG, O’Kushy JR (1986) The growth and development of microvasculature in human cerebral cortex. J Neuropathol Exp Neurol 45:222–232PubMedGoogle Scholar
  4. 4.
    Nehls V, Denzer K, Drenckhahn D (1992) Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res 270:469–474PubMedCrossRefGoogle Scholar
  5. 5.
    Beck L Jr, D’Amore PA (1997) Vascular development: cellular and molecular regulation. FASEB J 11:365–373PubMedGoogle Scholar
  6. 6.
    Balabanov R, Dore-Duffy P (1998) Role of the CNS microvascular pericyte in the blood–brain barrier. J Neurosci Res 53:637–644PubMedCrossRefGoogle Scholar
  7. 7.
    Hirschi KK, Rohovsky SA, Beck LH et al (1999) Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ Res 84:298–305PubMedGoogle Scholar
  8. 8.
    Redmer DA, Doraiswamy V, Bortnem BJ et al (2001) Evidence for a role of capillary pericytes in vascular growth of the developing ovine corpus luteum. Biol Reprod 65:879–889PubMedCrossRefGoogle Scholar
  9. 9.
    Fukushi J, Makagiansar IT, Stallcup WB (2004) NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3beta1 integrin. Mol Biol Cell 15:3580–3590PubMedCrossRefGoogle Scholar
  10. 10.
    Witmer AN, van Blijswijk BC, van Noorden CJF et al (2004) In vivo angiogenesis phenotype of endothelial cells and pericytes induced by vascular endothelial growth factor-A. J Histochem Cytochem 52:39–52PubMedGoogle Scholar
  11. 11.
    Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523PubMedCrossRefGoogle Scholar
  12. 12.
    Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro-oncol 7:452–464PubMedCrossRefGoogle Scholar
  13. 13.
    Lai CH, Kuo KH (2005) The critical component to establish in vitro BBB model: Pericyte. Brain Res Brain Res Rev 50:258–265PubMedCrossRefGoogle Scholar
  14. 14.
    Burg M, Pasqualini R, Arap W et al (1999) NG2 proteoglycan-binding peptides target tumor neovasculature. Cancer Res 235:254–264Google Scholar
  15. 15.
    Ozerdem U, Grako KA, Dahlin-Huppe K et al (2001) NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222:218–227PubMedCrossRefGoogle Scholar
  16. 16.
    Ozerdem U, Monosov E, Stallcup WB (2002) NG2 proteoglycan expression by pericytes in pathological microvasculature. Microsc Res 63:129–134Google Scholar
  17. 17.
    Ozerdem U, Stallcup WB (2003) Early contribution of pericytes to angiogenesis sprouting and tube formation. Angiogenesis 6:241–249PubMedCrossRefGoogle Scholar
  18. 18.
    Ozerdem U, Stallcupp WB (2004) Pathological angiogenesis is reduced by targeting pericytes via the NG2 proteoglycan. Angiogenesis 7:269–276PubMedCrossRefGoogle Scholar
  19. 19.
    Schlingemann RO, Rietveld FJ, de Waal RM et al (1990) Expression of the high molecular weight melanoma-associated antigen by pericytes during angiogenesis in tumors and in healing wounds. Am J Pathol 136:1393–1405PubMedGoogle Scholar
  20. 20.
    Grako KA, Stallcup WB (1995) Participation of the NG2 proteoglycan in rat aortic smooth muscle cell responses to platelet-derived growth factor. Exp Cell Res 221:231–240PubMedCrossRefGoogle Scholar
  21. 21.
    Chekenya M, Enger P, Thorsen F et al (2002) The glial precursor proteoglycan, NG2, is expressed on tumour neovasculature by vascular pericytes in human malignant brain tumours. Neuropathol Appl Neurobiol 28:367–380PubMedCrossRefGoogle Scholar
  22. 22.
    Gerhardt H, Betsholtz C (2003) Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 314:15–23PubMedCrossRefGoogle Scholar
  23. 23.
    MacFadyen JR, Haworth O, Roberston D et al (2005) Endosialin (TEM1, CD248) is a marker of stromal fibroblasts and is not selectively expressed on tumour endothelium. FEBS Lett 579:2569–2575PubMedCrossRefGoogle Scholar
  24. 24.
    Betsholtz C (2004) Insight into the physiological functions of PDGF through genetic studies in mice. Cytokine Growth Factor Rev 15:215–228PubMedCrossRefGoogle Scholar
  25. 25.
    Virgintino D, Robertson D, Benagiano V et al (2000) Immunogold cytochemistry of the blood–brain barrier glucose transporter GLUT1 and endogenous albumin in the developing human brain. Brain Res Dev Brain Res 123:95–101PubMedCrossRefGoogle Scholar
  26. 26.
    Virgintino D, Errede M, Robertson D et al (2003) VEGF expression is developmentally regulated during human brain angiogenesis. Histochem Cell Biol 119:227–232PubMedGoogle Scholar
  27. 27.
    Virgintino D, Errede M, Robertson D et al (2004) Immunolocalization of tight junction proteins in the adult and developing human brain. Histochem Cell Biol 122:51–59PubMedCrossRefGoogle Scholar
  28. 28.
    Rundhaug JE (2005) Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9:267–285PubMedGoogle Scholar
  29. 29.
    Haralabopoulos GC, Grant DS, Kleinman HK et al (1994) Inhibitors of basement membrane collagen synthesis prevent endothelial alignment in matrigel in vitro and angiogenesis in vivo. Lab Invest 71:575–582PubMedGoogle Scholar
  30. 30.
    Tagami M, Yamagata K, Fujino H et al (1992) Morphological differentiation of endothelial cells co-cultured with astrocytes on type-I or type-IV collagen. Cell Tissue Res 268:225–232PubMedCrossRefGoogle Scholar
  31. 31.
    Savettieri G, Di Liegro I, Catania C et al (2000) Neurons and ECM regulate occludin localization in brain endothelial cells. Neuroreport 11:1081–1084PubMedCrossRefGoogle Scholar
  32. 32.
    Campbell IL, Pagenstecher A (1999) Matrix metalloproteinases and their inhibitors in the nervous system: the good, the bad and the enigmatic. Trends Neurosci 22:285–287PubMedCrossRefGoogle Scholar
  33. 33.
    Nguyen M, Arkell J, Jackson CJ (2001) Human endothelial gelatinases and angiogenesis. Int J Biochem Cell Biol 33:960–970PubMedCrossRefGoogle Scholar
  34. 34.
    Planas AM, Sole S, Justicia C (2001) Expression and activation of matrix metalloproteinase-2 and -9 in rat brain after transient focal cerebral ischemia. Neurobiol Dis 8:834–846PubMedCrossRefGoogle Scholar
  35. 35.
    Girolamo F, Virgintino D, Errede M et al (2004) Involvement of metalloprotease-2 in the development of human brain microvessels. Histochem Cells Biol 122:261–270CrossRefGoogle Scholar
  36. 36.
    Notari L, Miller A, Martinez A et al (2005) Pigment epithelium-derived factor is a substrate for matrix metalloproteinase type 2 and type 9: implications for downregulation in hypoxia. Invest Ophthalmol Vis Sci 46:2736–2747PubMedCrossRefGoogle Scholar
  37. 37.
    Tillet E, Ruggiero F, Nishiyama A et al (1997). The membrane-spanning proteoglycan NG2 binds to collagens V and VI through the central non-globular domain of its core protein. J Biol Chem 272:10769–10776PubMedCrossRefGoogle Scholar
  38. 38.
    Bayer SA, Altman J (2005) The human brain during the second trimester. Taylor and Francis, LondonGoogle Scholar
  39. 39.
    Huber MA, Kraut N, Schweifer N et al (2006) Expression of stromal cell markers in distinct compartments of human skin cancers. J Cutan Pathol 33:145–155PubMedCrossRefGoogle Scholar
  40. 40.
    Macfadyen J, Savage K, Wienke D et al (2006) Endosialin is expressed on stromal fibroblasts and CNS pericytes in mouse embryos and is downregulated during development. Gene Expr Patterns doi:10.1016/j.modgep.2006.07.006Google Scholar
  41. 41.
    Nishiyama A, Lin XH, Stallcup WB (1995) Generation of truncated forms of the NG2 proteoglycan by cell surface proteolysis. Mol Biol Cell 6:1819–1832PubMedGoogle Scholar
  42. 42.
    Roggendorf W, Opti H, Schuppan D (1988) Altered expression of collagen type VI in brain vessels of patients with chronic hypertension. A comparison with distribution of collagen type VI and procollagen III. Acta Neuropathol (Berl) 77:55–60CrossRefGoogle Scholar
  43. 43.
    Stallcup WB (2002) The NG2 proteoglycan: past insights and future prospects. J Neurocytol 31:423–435PubMedCrossRefGoogle Scholar
  44. 44.
    Kuo HJ, Maslen CL, Keene DR et al (1997) Type VI collagen anchors endothelial basement membranes by interacting with type IV collagen. Biol Chem 272:26522–26529CrossRefGoogle Scholar
  45. 45.
    Miller B, Sheppard A, Bicknese A et al (1995) Chondroitin sulfate proteoglycans in the developing cerebral cortex: the distribution of neurocan distinguishes forming afferent and efferent axonal pathways. J Comp Neurol 355:615–628PubMedCrossRefGoogle Scholar
  46. 46.
    Liebner S, Fischmann A, Rascher G et al (2000) Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol (Berl) 100:323–331CrossRefGoogle Scholar
  47. 47.
    Errede M, Benagiano V, Girolamo F (2002) Differential expression of connexin43 in foetal, adult and tumour-associated human brain endothelial cells. Histochem J 34:265–271PubMedCrossRefGoogle Scholar
  48. 48.
    Morikawa S, Baluk P, Kaidoh T et al (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160:985–1000PubMedGoogle Scholar
  49. 49.
    Baffert F, Thurston G, Rochon-Duck M et al (2004) Age-related changes in vascular endothelial growth factor dependency and angiopoietin-1-induced plasticity of adult blood vessels. Circ Res 94:984–992PubMedCrossRefGoogle Scholar
  50. 50.
    Dorrell MI, Aguilar E, Friedlander M (2002) Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Invest Ophthalmol Vis Sci 43:3500–3510PubMedGoogle Scholar
  51. 51.
    Ruhrberg C, Gerhardt H, Golding M et al (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16:2684–2698PubMedCrossRefGoogle Scholar
  52. 52.
    Gerhardt H, Golding M, Fruttiger M et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177PubMedCrossRefGoogle Scholar
  53. 53.
    Bellon G, Martiny L, Robinet A (2004) Matrix metalloproteinases and matrikines in angiogenesis. Crit Rev Oncol Hematol 49:203–220PubMedGoogle Scholar
  54. 54.
    Ghersi G, Zhao Q, Salamone M et al (2006) The protease complex consisting of dipeptidyl peptidase IV and seprase plays a role in the migration and invasion of human endothelial cells in collagenous matrices. Cancer Res 66:4652–4661PubMedCrossRefGoogle Scholar
  55. 55.
    Albrecht U, Seulberger H, Schwarz H et al (1990) Correlation of blood–brain barrier function and HT7 protein distribution in chick brain circumventricular organs. Brain Res 535:49–61PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  • Daniela Virgintino
    • 1
  • Francesco Girolamo
    • 1
  • Mariella Errede
    • 1
  • Carmen Capobianco
    • 2
  • David Robertson
    • 3
  • William B. Stallcup
    • 4
  • Roberto Perris
    • 5
    • 6
  • Luisa Roncali
    • 1
  1. 1.Department of Human Anatomy and HistologyUniversity of Bari School of MedicineBariItaly
  2. 2.Department of Emergency and Organ TransplantationUniversity of Bari School of MedicineBariItaly
  3. 3.The Breakthrough Breast Cancer Research CentreInstitute of Cancer ResearchLondonUK
  4. 4.The Burnham Institute for Medical ResearchLa JollaUSA
  5. 5.Department of Evolutionary and Functional BiologyUniversity of ParmaParmaItaly
  6. 6.Division for Experimental Oncology 2The National Cancer Institute of Aviano, CRO-IRCCSAvianoItaly

Personalised recommendations