Advertisement

Angiogenesis

, Volume 8, Issue 3, pp 205–216 | Cite as

Elucidation of the mechanisms underlying the angiogenic effects of ginsenoside Rg1 in vivo and in vitro

  • Patrick Y.K. Yue
  • Daisy Y.L. Wong
  • W.Y. Ha
  • M.C. Fung
  • N.K. Mak
  • H.W. Yeung
  • H.W. Leung
  • Kelvin Chan
  • L. Liu
  • T.P.D. Fan
  • Ricky N.S. WongEmail author
Article

Abstract

The major active constituents of ginseng are ginsenosides, and Rg1 is a predominant compound of the total extract. Recent studies have demonstrated that Rg1 can promote angiogenesis in vivo and in vitro. In this study, we used a DNA microarray technology to elucidate the mechanisms of action of Rg1. We report that Rg1 induces the proliferation of HUVECs, monitored using [3H]-thymidine incorporation and Trypan blue exclusion assays. Furthermore, Rg1 (150–600  nM) also showed an enhanced tube forming inducing effect on the HUVEC. Rg1 was also demonstrated to promote angiogenesis in an in vivo Matrigel plug assay, and increase endothelial sprouting in the ex vivo rat aorta ring assay. Differential gene expression profile of HUVEC following treatment with Rg1 revealed the expression of genes related to cell adhesion, migration and cytoskeleton, including RhoA, RhoB, IQGAP1, CALM2, Vav2 and LAMA4. Our results suggest that Rg1 can promote angiogenesis in multiple models, and this effect is partly due to the modulation of genes that are involved in the cytoskeletal dynamics, cell–cell adhesion and migration.

Keywords

angiogenesis gene expression profiling ginsenosides HUVEC microarray Rg1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

W wish to thank Dr. Shiladitya Sengupta, Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, United Kingdom, for the valuable comments on this manuscript. We also thank Mr. Micheal Tsang and Miss. Emily Leung for their help in the proliferation assay. We are very grateful for the technical assistance in histological staining of Mr. Victor Ma and Mr. Cadmon Lim, Department of Clinical Oncology, Queen Elizabeth Hospital, HK. We also thank Mr. Kevin Kok and Miss. Fiona Luong for their help on Matrigel plug assay. We thank Dr. Simon Lee, Department of biochemistry, Chinese University of Hong Kong, for sharing experience on microarray data analysis. This work was supported by the Earmark Research grants (HKBU 2001/99M, HKBU 2171/03M) of the Research Grant Committee, Hong Kong SAR Government; Faculty Research Grant of the Hong Kong Baptist University (FRG/01-02/I-05).

Supplementary material

References

  1. 1.
    1. Liu CX, Xiao PG. (1992). Recent advances on ginseng research in China. J Ethnopharmacol 36:27–38CrossRefPubMedGoogle Scholar
  2. 2.
    2. Wang BX, Cui JC, Liu AJ, Wu SK. (1983). Studies on the anti-fatigue effect of saponins of stems and leaves of panax ginseng (SSLG). J Tradit Chin Med 3:89–94PubMedGoogle Scholar
  3. 3.
    3. Takahashi M, Tokuyama S, Kaneto H. (1992). Anti-stress effect of ginseng on the inhibition of the development of morphine tolerance in stressed mice. Jpn J Pharmacol 59:399–404PubMedCrossRefGoogle Scholar
  4. 4.
    4. Attele AS, Zhou YP, Xie JT, Wu JA, Zhang L, Dey L, Pugh W, Rue PA, Polonsky KS, Yuan CS. (2002). Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 51:1851–1858PubMedCrossRefGoogle Scholar
  5. 5.
    5. Gill CN. (1997). Panax ginseng pharmacology: a nitric oxide link. Biochem Pharmacol 54:1–8CrossRefPubMedGoogle Scholar
  6. 6.
    6. Folkman J, Yuen S. (1992). Angiogenesis. J Biol Chem 267:10931–10934PubMedGoogle Scholar
  7. 7.
    7. Tonnesen MG, Feng X, Clark RA. (2000). Angiogenesis in wound healing. J Investig Dermatol Symp Proc 5:40–4CrossRefPubMedGoogle Scholar
  8. 8.
    8. Favier J, Corvol P. (2001). Physiological angiogenesis. Therapie 56:455–463PubMedGoogle Scholar
  9. 9.
    9. Folkman J. (1974). Tumor angiogenesis. Adv Cancer Res 19:331–358PubMedCrossRefGoogle Scholar
  10. 10.
    10. Walsh DA. (1999). Angiogenesis and arthritis. Rheumatology 38:103–112CrossRefPubMedGoogle Scholar
  11. 11.
    11. Paleolog EM. (2002). Angiogenesis in rheumatoid arthritis. Arthritis Res 3:S81–S90CrossRefGoogle Scholar
  12. 12.
    12. Funstsu H, Yamasshita H, Noma H, Shimizu E, Yamashita T, Hori S. (2001). Stimulation and inhibition of angiogenesis in diabetic retinopathy. Jpn J Ophthalmol 45, 577–584CrossRefPubMedGoogle Scholar
  13. 13.
    13. Morisaki N, Watanabe S, Tezuka M, Zenibayashi M, Shiina R, Koyama N, Kanzaki T, Saito Y. (1995). Mechanism of angiogenic effects of saponin from ginseng Radix rubra in human umbilical vein endothelial cells. Br J Pharmacol 115:1188–1193PubMedGoogle Scholar
  14. 14.
    14. Sato K, Mochizuki M, Saiki I, Yoo YC, Samukawa K, Azuma I. (1994). Inhibitory of tumor angiogenesis and metastasis by a saponin of Panax ginseng, ginsenoside-Rb2. Biol Pharm Bull 17:635–639PubMedGoogle Scholar
  15. 15.
    15. Tao H, Yao M, Zou S, Zhao D, Qiu H. (2002). Effect of angiogenesis inhibitor Rg3 on the growth and metastasis of gastric cancer in SCID mice. Zhounghua Wai Ke Za Zhi 40:606–608Google Scholar
  16. 16.
    16. Shiladitya S, Toh SA, Sellers LA, Skepper JN, Koolwijk P, Leung HW, Yeung HW, Wong RNS, Sassisekharan R, Fan TPD. (2004). Modulating angiogenesis. The Yin and the Yang in Ginseng. Circulation 110:1219–1225CrossRefPubMedGoogle Scholar
  17. 17.
    17. Passaniti A, Taylor RM, Pili R, Yue G, Long PV, Haney JA, Pauly RR, Grant DS, Martin GR. (1992). Methods in laboratory investigation. Lab Invest 67:519–528PubMedGoogle Scholar
  18. 18.
    18. Nicosia RF, Ottinetti A. (1990). Modulation of microvascular growth and morphogenesis by reconstituted basement membrane gel in three-dimensional cultures of rat aorta: a comparative study of angiogenesis in matrigel, collagen, fibrin, and plasma clot. In Vitro Cell Dev Biol 26:119–128PubMedCrossRefGoogle Scholar
  19. 19.
    19. Nicosia RF, Ottinetti A. (1990). Growth of microvessels in serum-free matrix culture of aorta. Lab Invest 63:115–122PubMedGoogle Scholar
  20. 20.
    20. Hegde P, Qi R, Abernathy K, Gay C, Dharap S, Gaspard R, Hughes JE, Snesrud E, Lee N, Quackenbush J. (2000). Concise guide to cDNA microarray analysis. Biotechnique 29:548–562Google Scholar
  21. 21.
    21. Tabuchi Y, Kondo T, Ogawa R, Mori H. (2002). DNA microarray analysis of genes elicited by ultrasound in human U937 cells. Biochem Biophys Res Commun 290:498–503CrossRefPubMedGoogle Scholar
  22. 22.
    22. Isner JM, Asahara T. (1998). Therapeutic angiogenesis. Front Biosci 3:e49–69PubMedGoogle Scholar
  23. 23.
    23. Risau W. (1997). Mechanisms of angiogenesis. Nature 386:671–674CrossRefPubMedGoogle Scholar
  24. 24.
    24. Shinkai K, Akedo H, Mukai M, Imamura F, Isoai A, Kobayashi M, Kitagawa I. (1996). Inhibitory of in vitro tumor cell invasion by ginsenoside Rg3. Jpn J Cancer Res 87:357–362PubMedGoogle Scholar
  25. 25.
    25. Lee YJ, Chung E, Lee KY, Lee YH, Huh B, Lee SK. (1997). Ginsenoside-Rg1, one of the major active moleculaes from panax ginseng, is a functional ligand of glucocorticoid receptor. Mol Cell Endocrinol 133:135–140CrossRefPubMedGoogle Scholar
  26. 26.
    26. Chung E, Lee KY, Lee YJ, Lee YH, Lee SK. (1998). Ginsenoside-Rg1 down-regulates glucocorticoid receptor and displays synergistic effects with cAMP. Steroid 63:421–424CrossRefGoogle Scholar
  27. 27.
    27. Newton R. (2000). Molecular mechanisms of glucocorticoid action: what is important?. Thorax 55:603–613CrossRefPubMedGoogle Scholar
  28. 28.
    28. Cardena GG, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A, Sessa WC. (1998). Dynamic activation of endothelial nitric oxide synthease by HSP90. Nature 392:821–824CrossRefPubMedGoogle Scholar
  29. 29.
    29. Braga VM, Machesky LM, Hall A, Hotchin NA. (1997). The small GTPase Rho and Rac are required for the establishment of cadherin-dependent cell-cell contacts. J Cell Biol 137:1421–1431CrossRefPubMedGoogle Scholar
  30. 30.
    30. Fukata M, Nakagawa M, Kuroda S, Kaibuchi K. (1999). Commentary Cell adhesion amd Rho small GTPase. J Cell Sci 112:4491–4500PubMedGoogle Scholar
  31. 31.
    31. Nishiyama T, Sasaki T, Takaishi K, Kato M, Yaku H, Araki K, Matsuura Y, Takai Y. (1994). Rac p21 is involved in insulin-induced memebrane ruffling and rho p21 is involved in hepatocyte growth factor- and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced membrane ruffling in KB cells. Mol Cell Biol 14:2447–2456PubMedGoogle Scholar
  32. 32.
    32. Ridley AJ, Hall A. (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399CrossRefPubMedGoogle Scholar
  33. 33.
    33. Takaishi K, Sasaki T, Kato M, Yamochi W, Kuroda S, Nakamura T, Takeichi M, Takai Y. (1994). Involvement of Rho p21 samll GTP-binding protein and its regulator in the HGF-induced cell motility. Oncogene 9:273–279PubMedGoogle Scholar
  34. 34.
    34. Schmitz AAP, Govek EE, Bottner B, Aelst LV. (2000). Rho GTPases: signaling, migration, and invasion. Exp Cell Res 261:1–12CrossRefPubMedGoogle Scholar
  35. 35.
    35. Takaishi K, Sasaki T, Kotani H, Nishioka H, Takai Y. (1997). Regulation of cell-cell adhesion by Rac and Rho small G proteins in MDCK cells. J Cell Biol 139:1047–1059CrossRefPubMedGoogle Scholar
  36. 36.
    36. Braga VM, Del MA, Machesky L, Dejana E. (1999). Regulation of cadherin function by Rho and Rac: modulation by junction maturation and cellular context. Mol Biol Cell 10:9–22PubMedGoogle Scholar
  37. 37.
    37. Kaibuchi K, Kuroda S, Amano M. (1999). Regukation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem 68:459–486CrossRefPubMedGoogle Scholar
  38. 38.
    38. Kaibuchi K, Kuroda S, Fukata M, Nakagawa M. (1999). Regulation of cadherin-mediated cell-cell adhesion by the Rho family GTPases. Curr Opin Cell Biol 11:591–596CrossRefPubMedGoogle Scholar
  39. 39.
    39. Braga V. (2000). Epithelial cell shape: cadherins and small GTPases. Exp Cell Res 261:83–90CrossRefPubMedGoogle Scholar
  40. 40.
    40. Abe K, Rossman KL, Liu B, Ritola KD, Chiang D, Campbell SL, Burridge K, Der CJ. (2000). Vav2 is an activator of Cdc42, Rac1, and RhoA. J Biol Chem 275:10141–10149CrossRefPubMedGoogle Scholar
  41. 41.
    41. Bustelo XR. (2000). Regulatory and signaling properties of the Vav family. Mol Cell Biol 20:1461–1477CrossRefPubMedGoogle Scholar
  42. 42.
    42. Crespo P, Schuebel KE, Ostrom AA, Gutkind JS, Bustelo XR. (1997). Phosphototyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 385:169–172CrossRefPubMedGoogle Scholar
  43. 43.
    43. Liu BP, Burridge K. (2000). Vav2 activates rac1, Cdc42, and RhoA downstream from growth factor receptor but not β1 integrins. Mol Cell Biol 20:7160–7169CrossRefPubMedGoogle Scholar
  44. 44.
    44. Aelst LV, Schorey CD. (1997). Rho GTPases and signaling networks. Genes Dev 11:2295–2322PubMedGoogle Scholar
  45. 45.
    45. Noren NK, Liu BP, Burridge K, Kreft B. (2000). P120 catenin regulates the actin cytoskeleton via Rho family GTPases. J Cell Biol 150:567–579CrossRefPubMedGoogle Scholar
  46. 46.
    46. Kuroda S, Fukata M, Nakagawa M, Fujii K, Nakamura T, Ookubo T, Izawa I, Nagase T. (1998). Role of IQGAP1, a target of small GTPases Cdc42 and Rac1, in regulation of E-cadherin-mediated cell-cell adhesion. Science 281:832–835CrossRefPubMedGoogle Scholar
  47. 47.
    47. Kuroda S, Fukata M, Nakagawa M, Kaibuchi K. (1999). Breakthroughs and views Cdc42, Rac1, and their effector IQGAP1 as molecular switches for cadherin-mediated cell-cell adhesion. Biochem Biophys Res Commun 262:1–6CrossRefPubMedGoogle Scholar
  48. 48.
    48. Fukata M, Kuroda S, Fujii K, Nakamurat T, Shoji I, Matsuura Y, Okawa K, Iwamatsu A, Kikuchi A, Kaibuchi K. (1997). Regulation of cross-linking of actin filament by IQGAP1 a target for Cdc42. J Biol Chem 272:29579–29583CrossRefPubMedGoogle Scholar
  49. 49.
    49. Joyal JL, Roland SA, Ho YD, Huddleston ME, Carr SA, Hart MJ, Scaks DB. (1997). Calmodulin modulates the interaction between IQGAP1 and Cdc42. J Biol Chem 272:15419–15425CrossRefPubMedGoogle Scholar
  50. 50.
    50. Ho YD, Joyal JL, Li ZG, Scaks DB. (1999). IQGAP1 integrates Ca2+/calmodulin and Cdc42 signaling. J Biol Chem 274, 464–470CrossRefPubMedGoogle Scholar
  51. 51.
    51. Li ZG, Kim SH, Higgin JMG, Brennert MB, Sacks DB. (1999). IQGAP1 and calmodulin modulate E-cadherin function. J Biol Chem 274:37885–37892CrossRefPubMedGoogle Scholar
  52. 52.
    52. Bootman MD, Collins TJ, Peppiatt CM, Prothero LS, MacKenzie L, Smet PD, Travers M, Tovry SC, Seo JT, Berridge MJ, Ciccolini F, Lipp P. (2001). Calcium signaling – an overview. Cell Dev Biol 12:3–10CrossRefGoogle Scholar
  53. 53.
    53. Tashiro K, Sephel GC, Weeks BSM, Martin GR, Kleinman HK, Yamada Y. (1989). A synthetic peptide containing the IKVAV sequence from the A chain of laminin mediates cell attachment, migration, and neurite outgrowth. J Biol Chem 264:16174–16182PubMedGoogle Scholar
  54. 54.
    54. Kleinman HK, Weeks BS, Schnaper HW, Kibbey MC, Yamamura K, Grant DS. (1993). The laminins: a family of basement membrane glycoproteins important in cell differentiation and tumor metastases. Vitam Horm 47:161–186PubMedCrossRefGoogle Scholar
  55. 55.
    55. Grant DS, Tashiro K, Segui RB, Yamada Y, Martin GR, Kleinman HK (1989). Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structure in vitro. Cell 58:933–943CrossRefPubMedGoogle Scholar
  56. 56.
    56. Malinda KM, Nomizu M, Chung M, Delgado M, Kiuratomi Y, Yamada Y, Kleinman HK. (1999). Identification of laminin α1 and β1 chain peptides active for endothelial cell adhesion, tube formation, and aortic sprouting. FASEB J 13:53–62PubMedGoogle Scholar
  57. 57.
    57. Gonzales M, Weksler B, Tsuruta D, Goldman RD, Yoon KJ, Hopkinson SB, Flitney FW, Jones JCR. (2000). Structure and function of a vimentin-associated matrix adhesion in endothelial cells. Mol Biol Cell 12:85–100Google Scholar
  58. 58.
    58. Greif H, Ben CJ, Shimon T, Bechor F, Eldar H, Livneh E. (1992). The protein kinase C-related PKC-L (eta) gene product is localized in the cell nucleus. Mol Cell Biol 12:1304–1311PubMedGoogle Scholar
  59. 59.
    59. Verkman AS, Hoek ANV, Ma T, Frigeri A, Skach WR, Mitra A, Tamarappoo BK, Farinas J. (1996). Water transport across mammalian cell membranes. Am J Physiol 270:C12–C30PubMedGoogle Scholar
  60. 60.
    60. Borgnia M, Nielsen S, Engel A, Agre P. (1999). Cellular and molecular biology and the aquaporin water channels. Annu Rev Biochem 68:428–458CrossRefGoogle Scholar
  61. 61.
    61. Verkman AS, Mitra AK. (2000). Structure and function of aquaporin water channels. Am J Physiol Renal Physiol 278:F13–F28PubMedGoogle Scholar
  62. 62.
    62. Matsuzaki T, Tajika Y, Tserentsoodol N, Suzuki T, Hagiwara H, Takata K. (2002). Aquaporins: a water channel family. Anat Sci Int 77:85–93CrossRefPubMedGoogle Scholar
  63. 63.
    63. Verkman AS. (2002). Aquaporin water channels and endothelial cell function. J Anat 200:617–627CrossRefPubMedGoogle Scholar
  64. 64.
    64. Banthorpe DV. (1994). Terpenoids. In: Mann J (eds). Natural Products. Longman Scientific and technical, Essex, pp. 331–339Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Patrick Y.K. Yue
    • 1
  • Daisy Y.L. Wong
    • 1
  • W.Y. Ha
    • 1
  • M.C. Fung
    • 2
  • N.K. Mak
    • 3
  • H.W. Yeung
    • 1
  • H.W. Leung
    • 1
  • Kelvin Chan
    • 1
  • L. Liu
    • 1
  • T.P.D. Fan
    • 4
  • Ricky N.S. Wong
    • 1
    • 3
    Email author
  1. 1.Hung Lai Ching Laboratory of Biomedical Science, Research and Development Division, School of Chinese MedicineHong Kong Baptist UniversityKowloonHong Kong
  2. 2.Department of Biology, Science FacultyChinese University of Hong KongShatinHong Kong
  3. 3.Department of BiologyHong Kong Baptist UniversityKowloon TongHong Kong
  4. 4.Angiogenesis & TCM Laboratory, Department of PharmacologyUniversity of CambridgeCambridgeUK

Personalised recommendations