, Volume 7, Issue 4, pp 307–311 | Cite as

Targeting neovascular pericytes in neurofibromatosis type 1

  • Ugur OzerdemEmail author


Apart from tumor-driven neovascularization, a less-appreciated consequence of neurofibromatosis type 1 (NF1) is the hyperproliferation of vascular mural cells (pericytes). This study aims at establishing a role for pericytes in NF1, and determining whether interference with the function of a key pericyte component (NG2 proteoglycan) inhibits NF1 tumor neovascularization. Neovascularization in NF1 was studied in Nf+/+(control), Nf1+/−, and Nf1−/−embryos at E-10, ischemia-induced retinal angiogenesis model in 24 eyes of Nf1+/−, Nf1+/+mice, and in malignant peripheral nerve sheath tumors (MPNSTs) derived from NF1 patients (ST88-14, NMS-2PC) orthotopically grown in nude mice (Crl: nu/nu). The anti-angiogenic effect of intracorneal polymer pellets containing anti-NG2 neutralizing antibody was quantified in the nude-mouse corneal angiogenesis model in which angiogenesis was induced by xenografting NMS-2PC tumor into the corneal stroma of 22 eyes. By using confocal microscopy, immunohistochemistry, and BrdU proliferation assay, the pericyte/endothelium ratios and proliferation rates were measured. Activated pericytes were present at the leading tip of the angiogenic sprouts. Pericytes showed continuous investment of endothelium in both NMS-2PC and ST88-14 MPNST tumor xenografts. Mean corneal angiogenesis induced by NMS-2PC tumor grafts in NG2-antibody treated eyes was 1.491 and 3.186 mm 2 in isotype-matched non-immunoglobulin treated eyes (control) (P=0.0002). A total of 193.8 vascular nuclei (a measure of ischemia-induced retinal angiogenesis) was present in angiogenic retinal tufts in Nf1+/− mice compared to 89.23 in Nf1+/+ mice (control) (P < 0.0001). Mean pericyte/endothelium investment ratios were 1.015, 1.380, and 2.084 in control, Nf1+/−, and Nf1−/−embryos, respectively. Pericytes were 23% (control), 49% (Nf1+/−), and 69% (Nf1−/−) BrdU-positive. Endothelial cells from the same embryos were 29% (control), 47% (Nf1+/−), and 62% (Nf1−/−) BrdU-positive. Angiogenesis is accelerated in NF1 due to hyperproliferation of pericytes and endothelial cells. Mitotically activated NG2-positive pericytes, and endothelial cells may serve as potential therapeutic targets in NF1.


angiogenesis endothelium mural cell neurofibromatosis NF1 NG2 pericyte type 1 








flk 1

VEGF receptor-2


malignant peripheral nerve sheath tumor


nerve/glial antigen 2


neurofibromatosis type 1


neurofibromatosis type1 gene


periodic acid-Schiff method


phosphate-buffered saline

PDGF β-receptor

platelet-derived growth factor beta receptor


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angelov, L, Salhia, B, Roncari, L.,  et al. 1999Inhibition of angiogenesis by blocking activation of the vascular endothelial growth factor receptor 2 leads to decreased growth of neurogenic sarcomasCancer Res5955365541PubMedGoogle Scholar
  2. 2.
    Feldkamp, MM, Gutmann, DH, Guha, A. 1998Neurofibromatosis type 1: Piecing the puzzle togetherCan J Neurol Sci25181191PubMedGoogle Scholar
  3. 3.
    Hirschi, KK, Rohovsky, SA, D’Amore, PA. 1997Cell-cell interactions in vessel assembly: A model for the fundamentals of vascular remodellingTranspl Immunol5177178CrossRefPubMedGoogle Scholar
  4. 4.
    McDonald, DM, Choyke, PL. 2003Imaging of angiogenesis: From microscope to clinicNat Med971325CrossRefPubMedGoogle Scholar
  5. 5.
    Ozerdem, U, Stallcup, WB. 2003Early contribution of pericytes to angiogenic sprouting and tube formationAngiogenesis6241249CrossRefPubMedGoogle Scholar
  6. 6.
    Ozerdem, U, Monosov, E, Stallcup, WB. 2002NG2 proteoglycan expression by pericytes in pathological microvasculatureMicrovasc Res63129134CrossRefPubMedGoogle Scholar
  7. 7.
    Ozerdem, U, Grako, KA, Dahlin-Huppe, K.,  et al. 2001NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesisDev Dyn222218227CrossRefPubMedGoogle Scholar
  8. 8.
    Norton, KK, Xu, J, Gutmann, DH. 1995Expression of the neurofibromatosis I gene product, neurofibromin, in blood vessel endothelial cells and smooth muscleNeurobiol Dis21321PubMedGoogle Scholar
  9. 9.
    Hamilton, SJ, Friedman, JM. 2000Insights into the pathogenesis of neurofibromatosis 1 vasculopathyClin Genet58341344CrossRefPubMedGoogle Scholar
  10. 10.
    Gitler, AD, Zhu, Y, Ismat, FA.,  et al. 2003Nf1 has an essential role in endothelial cellsNat Genet337579PubMedGoogle Scholar
  11. 11.
    Muthukkaruppan, V, Auerbach, R. 1979Angiogenesis in the mouse corneaScience20514161418PubMedGoogle Scholar
  12. 12.
    Kenyon, BM, Voest, EE, Chen, CC.,  et al. 1996A model of angiogenesis in the mouse corneaInvest Ophthalmol Vis Sci3716251632PubMedGoogle Scholar
  13. 13.
    Ozerdem, U, Stallcup, WB. 2004Pathological angiogenesis is reduced by targeting pericytes via the NG2 proteoglycanAngiogenesis7269276CrossRefPubMedGoogle Scholar
  14. 14.
    Kenyon, BM, Browne, F, D’Amato, RJ. 1997Effects of thalidomide and related metabolites in a mouse corneal model of neovascularizationExp Eye Res64971978CrossRefPubMedGoogle Scholar
  15. 15.
    Brannan, CI, Perkins, AS, Vogel, KS.,  et al. 1994Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissuesGenes Dev810191029PubMedGoogle Scholar
  16. 16.
    Smith, LE, Wesolowski, E, McLellan, A.,  et al. 1994Oxygen-induced retinopathy in the mouseInvest Ophthalmol Vis Sci35101111PubMedGoogle Scholar
  17. 17.
    Dawson, B, Trapp, RG. 2001Basic and Clinical Biostatistics3McGraw-HillNew YorkGoogle Scholar
  18. 18.
    Drake, CJ, Fleming, PA. 2000Vasculogenesis in the day 6.5 to 9.5 mouse embryoBlood9516711679PubMedGoogle Scholar
  19. 19.
    Chang, YS, Tomaso, E, McDonald, DM,  et al. 2000Mosaic blood vessels in tumors: Frequency of cancer cells in contact with flowing bloodProc Natl Acad Sci USA971460814613CrossRefPubMedGoogle Scholar
  20. 20.
    Gerhardt, H, Betsholtz, C. 2003Endothelial-pericyte interactions in angiogenesisCell Tissue Res3141523CrossRefPubMedGoogle Scholar
  21. 21.
    Rajantie, I, Ilmonen, M, Alminaite, A.,  et al. 2004Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cellsBlood10420842086CrossRefPubMedGoogle Scholar
  22. 22.
    Dolbeare, F, Gratzner, H, Pallavicini, MG, Gray, JW. 1983Flow cytometric measurement of total DNA content and incorporated bromodeoxyuridineProc Natl Acad Sci USA8055735577PubMedGoogle Scholar
  23. 23.
    Dean, PN, Dolbeare, F, Gratzner, H.,  et al. 1984Cell-cycle analysis using a monoclonal antibody to BrdUrdCell Tissue Kinet17427436PubMedGoogle Scholar
  24. 24.
    Nowakowski, RS, Lewin, SB, Miller, MW. 1989Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population.J Neurocytol18311318CrossRefPubMedGoogle Scholar
  25. 25.
    Ezaki, T, Baluk, P, Thurston, G.,  et al. 2001Time course of endothelial cell proliferation and microvascular remodeling in chronic inflammationAm J Pathol15820432055PubMedGoogle Scholar
  26. 26.
    Lindahl, P, Johansson, BR, Leveen, P, Betsholtz, C. 1997Pericyte loss and microaneurysm formation in PDGF-B-deficient miceScience277242245CrossRefPubMedGoogle Scholar
  27. 27.
    Ahlgren-Beckendorf, JA, Maggio, WW, Chen, F, Kent, TA. 1993Neurofibromatosis 1 mRNA expression in blood vesselsBiochem Biophys Res Commun197101924CrossRefPubMedGoogle Scholar
  28. 28.
    Norton, KK, Xu, J, Gutmann, DH. 1995Expression of the neurofibromatosis I gene product, neurofibromin, in blood vessel endothelial cells and smooth muscleNeurobiol Dis21321PubMedGoogle Scholar
  29. 29.
    Gutmann, DH, Wu, YL, Hedrick, NM.,  et al. 2001Heterozygosity for the neurofibromatosis 1 (NF1) tumor suppressor results in abnormalities in cell attachment, spreading and motility in astrocytesHum Mol Genet1030093016CrossRefPubMedGoogle Scholar
  30. 30.
    Bajenaru, ML, Hernandez, MR, Perry, A,  et al. 2003Optic nerve glioma in mice requires astrocyte Nf1 gene inactivation and Nf1 brain heterozygosityCancer Res6385738577PubMedGoogle Scholar
  31. 31.
    Ingram, DA, Zhang, L, McCarthy, J.,  et al. 2002Lymphoproliferative defects in mice lacking the expression of neurofibromin: Functional and biochemical consequences of Nf1 deficiency in T-cell development and functionBlood10036563662CrossRefPubMedGoogle Scholar
  32. 32.
    Bennett, MR, Rizvi, TA, Karyala, S.,  et al. 2003Aberrant growth and differentiation of oligodendrocyte progenitors in neurofibromatosis type 1 mutantsJ Neurosci2372077217PubMedGoogle Scholar
  33. 33.
    Etchevers, HC, Vincent, C, Le Douarin, NM, Couly, GF. 2001The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrainDevelopment12810591068PubMedGoogle Scholar
  34. 34.
    Korn, J, Christ, B, Kurz, H. 2002Neuroectodermal origin of brain pericytes and vascular smooth muscle cellsJ Comp Neurol4427888CrossRefPubMedGoogle Scholar
  35. 35.
    Bergers, G, Song, S, Meyer-Morse, N,  et al. 2003Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitorsJ Clin Invest11112871295CrossRefPubMedGoogle Scholar
  36. 36.
    Saharinen, P, Alitalo, K. 2003Double target for tumor mass destructionJ Clin Invest111127780CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Vascular Biology DivisionLa Jolla Institute for Molecular MedicineSan DiegoUSA

Personalised recommendations