Annals of Global Analysis and Geometry

, Volume 56, Issue 4, pp 667–690 | Cite as

On branched minimal immersions of surfaces by first eigenfunctions

  • Donato CianciEmail author
  • Mikhail Karpukhin
  • Vladimir Medvedev


It was proved by Montiel and Ros that for each conformal structure on a compact surface there is at most one metric which admits a minimal immersion into some unit sphere by first eigenfunctions. We generalize this theorem to the setting of metrics with conical singularities induced from branched minimal immersions by first eigenfunctions into spheres. Our primary motivation is the fact that metrics realizing maxima of the first nonzero Laplace eigenvalue are induced by minimal branched immersions into spheres. In particular, we show that the properties of such metrics induced from \({\mathbb {S}}^2\) differ significantly from the properties of those induced from \({\mathbb {S}}^m\) with \(m>2\). This feature appears to be novel and needs to be taken into account in the existing proofs of the sharp upper bounds for the first nonzero eigenvalue of the Laplacian on the 2-torus and the Klein bottle. In the present paper we address this issue and give a detailed overview of the complete proofs of these upper bounds following the works of Nadirashvili, Jakobson–Nadirashvili–Polterovich, El Soufi–Giacomini–Jazar, Nadirashvili–Sire and Petrides.


Spectral theory Branched minimal immersions Maximal metrics Eigenvalue bounds 



The authors are grateful to I. Polterovich and A. Girouard for suggesting this problem. The authors are also grateful to I. Polterovich, A. Girouard, G. Ponsinet, A. Penskoi, G. Kokarev, and Alex Wright for fruitful discussions and especially to A. Girouard for a careful first reading of this manuscript. The authors are grateful to the anonymous referee for providing useful comments and suggestions. This research is part of the third author’s PhD thesis at the Université de Montréal under the supervision of Iosif Polterovich.


  1. 1.
    Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314. Springer, Berlin (1996)CrossRefGoogle Scholar
  2. 2.
    Berger, M., Gauduchon, P., Mazet, E.: Le spectre d’une variété Riemannienne. Lecture Notes in Mathematics, vol. 194. Springer, Berlin (1971)CrossRefGoogle Scholar
  3. 3.
    Donaldson, S.: Riemann Surfaces. Oxford Graduate Texts in Mathematics, vol. 22. Oxford University Press, Oxford (2011)CrossRefGoogle Scholar
  4. 4.
    El Soufi, A., Giacomini, H., Jazar, M.: A unique extremal metric for the least eigenvalue of the Laplacian on the Klein bottle. Duke Math. J. 135(1), 181–202 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    El Soufi, A., Ilias, S.: Immersions minimales, première valeur propre du Laplacien et volume conforme. Math. Ann. 275(2), 257–267 (1986)MathSciNetCrossRefGoogle Scholar
  6. 6.
    El Soufi, A., Ilias, S.: Riemannian manifolds admitting isometric immersions by their first eigenfunctions. Pacific J. Math. 195(1), 91–99 (2000)MathSciNetCrossRefGoogle Scholar
  7. 7.
    El Soufi, A., Ilias, S.: Laplacian eigenvalue functionals and metric deformations on compact manifolds. J. Geom. Phys. 58(1), 89–104 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton Mathematical Series. Princeton University Press, Princeton, NJ (2012)zbMATHGoogle Scholar
  9. 9.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001). Reprint of the 1998 editionzbMATHGoogle Scholar
  10. 10.
    Girouard, A.: Fundamental tone, concentration of density, and conformal degeneration on surfaces. Canad. J. Math. 61(3), 548–565 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gulliver II, R.D., Osserman, R., Royden, H.L.: A theory of branched immersions of surfaces. Amer. J. Math. 95, 750–812 (1973)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hersch, J.: Quatre propriétés isopérimétriques de membranes sphériques homogènes. C. R. Acad. Sci. Paris Sér. A-B 270, A1645–A1648 (1970)zbMATHGoogle Scholar
  13. 13.
    Jakobson, D., Levitin, M., Nadirashvili, N., Nigam, N., Polterovich, I.: How large can the first eigenvalue be on a surface of genus two? Int. Math. Res. Not. IMRN 63, 3967–3985 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jakobson, D., Nadirashvili, N., Polterovich, I.: Extremal metric for the first eigenvalue on a Klein bottle. Canad. J. Math. 58(2), 381–400 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jost, J.: Compact Riemann Surfaces: An Introduction to Contemporary Mathematics, 2nd edn. Springer, Berlin (2002)CrossRefGoogle Scholar
  16. 16.
    Karpukhin, M.A.: Nonmaximality of known extremal metrics on torus and Klein bottle. Sb. Math. 204(12), 1728 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Karpukhin, M.A.: Spectral properties of bipolar surfaces to Otsuki tori. J. Spectr. Theory 4(1), 87–111 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Karpukhin, M.A.: Spectral properties of a family of minimal tori of revolution in five-dimensional sphere. Canad. Math. Bull. 58(2), 285–296 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Karpukhin, M.A.: Upper bounds for the first eigenvalue of the Laplacian on non-orientable surfaces. Int. Math. Res. Not. IMRN 20, 6200–6209 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Karpukhin, M.A.: Maximal metrics for the first Steklov eigenvalue on surfaces (2018). arXiv:1801.06914
  21. 21.
    Kokarev, G.: Variational aspects of Laplace eigenvalues on Riemannian surfaces. Adv. Math. 258, 191–239 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kokarev, G.: Conformal volume and eigenvalue problems (2017). arXiv:1712.08150
  23. 23.
    Lapointe, H.: Spectral properties of bipolar minimal surfaces in \(\mathbb{S}^4\). Differential Geom. Appl. 26(1), 9–22 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Li, P., Yau, S.T.: A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69(2), 269–291 (1982)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Montiel, S., Ros, A.: Minimal immersions of surfaces by the first eigenfunctions and conformal area. Invent. Math. 83(1), 153–166 (1986)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Montiel, S., Ros, A.: Schrödinger operators associated to a holomorphic map. In: Ferus, D., Pinkall, U., Simon, U., Wegner, B. (eds.) Global Differential Geometry And Global Analysis (Berlin, 1990). Lecture Notes in Mathematics, vol. 1481, pp. 147–174. Springer, Berlin (1991)CrossRefGoogle Scholar
  27. 27.
    Nadirashvili, N.: Berger’s isoperimetric problem and minimal immersions of surfaces. Geom. Funct. Anal. 6(5), 877–897 (1996)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Nadirashvili, N., Sire, Y.: Conformal spectrum and harmonic maps. Mosc. Math. J. 15(1), 123–140 (2015). 182MathSciNetCrossRefGoogle Scholar
  29. 29.
    Nadirashvili, N.S., Penskoi, A.V.: An isoperimetric inequality for the second non-zero eigenvalue of the Laplacian on the projective plane. Geom. Funct. Anal. 28, 1368–1393 (2018)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Nayatani, S., Shoda, T.: Metrics on a closed surface of genus two which maximize the first eigenvalue of the Laplacian (2018). ArXiv:1704.06384
  31. 31.
    Penskoi, A.V.: Extremal spectral properties of Lawson tau-surfaces and the Lamé equation. Mosc. Math. J. 12(1), 173–192 (2012). 216MathSciNetCrossRefGoogle Scholar
  32. 32.
    Penskoi, A.V.: Extremal metrics for the eigenvalues of the Laplace–Beltrami operator on surfaces. Uspekhi Mat. Nauk 68(6(414)), 107–168 (2013)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Penskoi, A.V.: Extremal spectral properties of Otsuki tori. Math. Nachr. 286(4), 379–391 (2013)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Penskoi, A.V.: Generalized Lawson tori and Klein bottles. J. Geom. Anal. 25(4), 2645–2666 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Petrides, R.: Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces. Geom. Funct. Anal. 24(4), 1336–1376 (2014)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Takahashi, T.: Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan 18, 380–385 (1966)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Troyanov, M.: Prescribing curvature on compact surfaces with conical singularities. Trans. Amer. Math. Soc. 324(2), 793–821 (1991)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Yang, P.C., Yau, S.T.: Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4) 7(1), 55–63 (1980)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA
  2. 2.Department of MathematicsUniversity of CaliforniaIrvineUSA
  3. 3.Département de Mathématiques et de Statistique, Pavillon André-AisenstadtUniversité de MontréalMontrealCanada

Personalised recommendations