Annals of Global Analysis and Geometry

, Volume 56, Issue 4, pp 631–665 | Cite as

Global regularity and solvability of left-invariant differential systems on compact Lie groups

  • Gabriel AraújoEmail author


We are interested in global properties of systems of left-invariant differential operators on compact Lie groups: regularity properties, properties on the closedness of the range and finite dimensionality of their cohomology spaces, when acting on various function spaces, e.g., smooth, analytic and Gevrey. Extending the methods of Greenfield and Wallach (Trans Am Math Soc 183:153–164, 1973) to systems, we obtain abstract characterizations for these properties and use them to derive some generalizations of results due to Greenfield (Proc Am Math Soc 31:115–118, 1972), Greenfield and Wallach (Proc Am Math Soc 31:112–114, 1972), as well as global versions of a result of Caetano and Cordaro (Trans Am Math Soc 363(1):185–201, 2011) for involutive structures.


Left-invariant operators Solvability Regularity Differential complexes Locally integrable structures 

Mathematics Subject Classification

35R03 35A01 58J10 



I wish to thank Paulo D. Cordaro and Andrew Raich for discussing parts of this work and their very useful inputs and also especially Max R. Jahnke and Luis F. Ragognette for their active participation in the earlier stages of this work, including helping to set up the original questions and proposing the framework that led to it, as well as many helpful suggestions throughout its development.


  1. 1.
    Araújo, G.: Regularity and solvability of linear differential operators in Gevrey spaces. Math. Nachr. 291(5–6), 729–758 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bergamasco, A.P., Petronilho, G.: Closedness of the range for vector fields on the torus. J. Differ. Equ. 154(1), 132–139 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bolley, P., Camus, J., Mattera, C.: Analyticité microlocale et itérés d’opérateurs. In: Séminaire Goulaouic–Schwartz (1978/1979), pages Exp. No. 13, 9. École Polytech., Palaiseau (1979)Google Scholar
  4. 4.
    Caetano, P.A.S., Cordaro, P.D.: Gevrey solvability and Gevrey regularity in differential complexes associated to locally integrable structures. Trans. Amer. Math. Soc. 363(1), 185–201 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chavel, I.: Eigenvalues in Riemannian Geometry, Pure and Applied Mathematics (Including a Chapter by Burton Randol, With an Appendix by Jozef Dodziuk), vol. 115. Academic Press Inc., Orlando (1984)Google Scholar
  6. 6.
    Chevalley, C., Eilenberg, S.: Cohomology theory of Lie groups and Lie algebras. Trans. Amer. Math. Soc. 63, 85–124 (1948)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dasgupta, A., Ruzhansky, M.: Gevrey functions and ultradistributions on compact Lie groups and homogeneous spaces. Bull. Sci. Math. 138(6), 756–782 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dasgupta, A., Ruzhansky, M.: Eigenfunction expansions of ultradifferentiable functions and ultradistributions. Trans. Amer. Math. Soc. 368(12), 8481–8498 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fujita, K., Morimoto, M.: Gevrey classes on compact real analytic Riemannian manifolds. Tokyo J. Math. 18(2), 341–355 (1995)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Greenfield, S.J.: Hypoelliptic vector fields and continued fractions. Proc. Amer. Math. Soc. 31, 115–118 (1972)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Greenfield, S.J., Wallach, N.R.: Global hypoellipticity and Liouville numbers. Proc. Amer. Math. Soc. 31, 112–114 (1972)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Greenfield, S.J., Wallach, N.R.: Remarks on global hypoellipticity. Trans. Amer. Math. Soc. 183, 153–164 (1973)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gunning, R.C., Rossi, H.: Analytic Functions of Several Complex Variables. Prentice-Hall Inc, Englewood Cliffs (1965)zbMATHGoogle Scholar
  14. 14.
    Hilgert, J., Neeb, K.-H.: Structure and Geometry of Lie Groups. Springer Monographs in Mathematics. Springer, New York (2012)CrossRefGoogle Scholar
  15. 15.
    Hochschild, G., Serre, J.-P.: Cohomology of Lie algebras. Ann. Math. 2(57), 591–603 (1953)CrossRefGoogle Scholar
  16. 16.
    Jahnke, M.R.: Top-Degree Solvability for Hypocomplex Structures and the Cohomology of Left-invariant Involutive Structures on Compact Lie Groups. University of São Paulo, PhD thesis (2018)Google Scholar
  17. 17.
    Knapp, A.W.: Lie Groups Beyond an Introduction, Progress in Mathematics, vol. 140. Birkhäuser Boston Inc, Boston (1996)CrossRefGoogle Scholar
  18. 18.
    Komatsu, H.: Projective and injective limits of weakly compact sequences of locally convex spaces. J. Math. Soc. Japan 19, 366–383 (1967)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kotake, T., Narasimhan, M.S.: Regularity theorems for fractional powers of a linear elliptic operator. Bull. Soc. Math. France 90, 449–471 (1962)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Köthe, G.: Topological Vector Spaces. II. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 237. Springer, New York (1979)Google Scholar
  21. 21.
    Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications (Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 183), vol. III. Springer, New York (1973)Google Scholar
  22. 22.
    Malaspina, F., Nicola, F.: Gevrey local solvability in locally integrable structures. Ann. Mat. Pura Appl. 193(5), 1491–1502 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ragognette, L.F.: Ultradifferential operators in the study of Gevrey solvability and regularity. Math. Nachr. 292, 409–427 (2019)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Schapira, P.: Solutions hyperfonctions des équations aux dérivées partielles du premier ordre. Bull. Soc. Math. France 97, 243–255 (1969)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Seeley, R.T.: Eigenfunction expansions of analytic functions. Proc. Amer. Math. Soc. 21, 734–738 (1969)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Suzuki, H.: On the semi-local existence of real analytic solutions of a partial differential equation. Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 11, 245–252 (1972)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Treves, F.: Hypo-Analytic Structures, Princeton Mathematical Series (Local Theory), vol. 40. Princeton University Press, Princeton (1992)zbMATHGoogle Scholar
  28. 28.
    Wallach, N.R.: Harmonic Analysis on Homogeneous Spaces. Pure and Applied Mathematics, No. 19. Marcel Dekker Inc, New York (1973)zbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Departamento de Matemática, Instituto de Ciências Matemáticas e de ComputaçãoUniversidade de São Paulo (USP)São CarlosBrazil

Personalised recommendations