Annals of Global Analysis and Geometry

, Volume 55, Issue 4, pp 623–629 | Cite as

A Liouville theorem on complete non-Kähler manifolds

  • Yuang Li
  • Chuanjing ZhangEmail author
  • Xi Zhang


In this paper, we prove a Liouville theorem for holomorphic functions on a class of complete Gauduchon manifolds. This generalizes a result of Yau for complete Kähler manifolds to the complete non-Kähler case.


Holomorphic function Gauduchon manifold Liouville theorem 

Mathematics Subject Classification

53C55 53C07 58E20 



  1. 1.
    Bruzzo, U., Graña Otero, B.: Metrics on semistable and numerically effective Higgs bundles. J. Reine Angew. Math. 612, 59–79 (2007)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Buchdahl, N.P.: Hermitian–Einstein connections and stable vector bundles over compact complex surfaces. Math. Ann. 280(4), 625–648 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cardona, S.A.: On vanishing theorems for Higgs bundles. Differential Geom. Appl. 35, 95–102 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Donaldson, S.K.: Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles. Proc. Lond. Math. Soc. 50(1), 1–26 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gaffney, M.P.: A special Stokes’s theorem for complete Riemannian manifolds. Ann. Math. (2) 60, 140–145 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gauduchon, P.: Torsion 1-forms of compact Hermitian manifolds. Math. Ann. 267(4), 495–518 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Greene, R.E., Wu, H.: Curvature and complex analysis. Bull. Amer. Math. Soc. 77, 1045–1049 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. (3) 55(1), 59–126 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kobayashi, S.: Curvature and stability of vector bundles. Proc. Japan Acad. Ser. A Math. Sci. 58(4), 158–162 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Li, J., Yau, S.T.: Hermitian–Yang–Mills Connection on Non-Kähler Manifolds. Mathematical Aspects of String Theory (San Diego, Calif., 1986), Advanced Series in Mathematical Physics, vol. 1, pp. 560–573. World Scientific Publishing, Singapore (1987)Google Scholar
  11. 11.
    Lübke, M., Teleman, A.: The Kobayashi–Hitchin Correspondence. World Scientific Publishing Co., Inc., River Edge (1995)CrossRefzbMATHGoogle Scholar
  12. 12.
    Lübke, M., Teleman, A.: The universal Kobayashi–Hitchin correspondence on Hermitian manifolds. Mem. Amer. Math. Soc. 183(863), vi+97 (2006)Google Scholar
  13. 13.
    Li, J.Y., Zhang, C.J., Zhang, X.: Semi-stable Higgs sheaves and Bogomolov type inequality. Calc. Var. Partial Differential Equations 56(3), 81 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Narasimhan, M.S., Seshadri, C.S.: Stable and unitary vector bundles on a compact Riemann surface. Ann. Math. (2) 82, 540–567 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Simpson, C.T.: Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization. J. Amer. Math. Soc. 1(4), 867–918 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Simpson, C.T.: Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math. 75, 5–95 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Uhlenbeck, K.K., Yau, S.T.: On the existence of Hermitian–Yang–Mills connections in stable vector bundles. Comm. Pure Appl. Math. 39(S1), S257–S293 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Yau, S.T.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana Univ. Math. J. 25(7), 659–670 (1976)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of Science and Technology of ChinaAnhuiPeople’s Republic of China

Personalised recommendations