Annals of Global Analysis and Geometry

, Volume 55, Issue 3, pp 555–573 | Cite as

Twistor lines on algebraic surfaces

  • A. AltavillaEmail author
  • E. Ballico


We give quantitative and qualitative results on the family of surfaces in \(\mathbb {CP}^3\) containing finitely many twistor lines. We start by analyzing the ideal sheaf of a finite set of disjoint lines E. We prove that its general element is a smooth surface containing E and no other line. Afterward we prove that twistor lines are Zariski dense in the Grassmannian Gr(2, 4). Then, for any degree \(d\ge 4\), we give lower bounds on the maximum number of twistor lines contained in a degree d surface. The smooth and singular cases are studied as well as the j-invariant one.


Twistor fibration Lines on surfaces Plücker quadric 

Mathematics Subject Classification

Primary 14D21 53C28 Secondary 32L25 


  1. 1.
    Altavilla, A.: Twistor interpretation of slice regular functions. J. Geom. Phys. 123, 184–208 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Altavilla, A., Ballico, E.: Three topological results on the twistor discriminant locus in the 4-sphere. Preprint arXiv:1808.07806 [math.DG] (submitted)
  3. 3.
    Altavilla, A., Sarfatti, G.: Slice-polynomial functions and twistor geometry of ruled surfaces in \({\mathbb{CP}}^3\). Preprint arXiv:1712.09946 [math.CV] (submitted)
  4. 4.
    Armstrong, J.: The twistor discriminant locus of the fermat cubic. New York J. Math. 21, 485–510 (2015)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Armstrong, J., Povero, M., Salamon, S.: Twistor lines on cubic surfaces. Rend. Semin. Mat. Univ. Politec. Torino 71(3–4), 317–338 (2013)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Armstrong, J., Salamon, S.: Twistor topology of the fermat cubic. SIGMA Symmetry Integrability Geom. Methods Appl. 10, 061, 12 (2014)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Ballico, E.: Conformal automorphisms of algebraic surfaces and algebraic curves in the complex projective space. J. Geom. Phys. 134, 153–160 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Boissière, S., Sarti, A.: Counting lines on surfaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6(1), 39–52 (2007)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Caporaso, L., Harris, J., Mazur, B.: How many rational points can a curve have? The moduli space of curves (Texel Island, 1994). Progr. Math., vol. 129, pp. 13–31. Birkhäuser, Boston (1995)Google Scholar
  10. 10.
    Carlini, E., Catalisano, M.V., Geramita, A.V.: \(3\)-dimensional sundials. Cent. Eur. J. Math. 9(5), 949–971 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chirka, E.M.: Orthogonal complex structures in \(\mathbb{R}^4\). Russ. Math. Surv. 73, 91–159 (2018)CrossRefzbMATHGoogle Scholar
  12. 12.
    Gentili, G., Salamon, S., Stoppato, C.: Twistor transforms of quaternionic functions and orthogonal complex structures. J. Eur. Math. Soc. (JEMS) 16(11), 2323–2353 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Griffiths, J.P., Harris, J.: Principles of Algebraic Geometry. Pure and Applied Mathematics. Wiley, New York (1978). ISBN: 0-471-32792-1Google Scholar
  14. 14.
    Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)CrossRefGoogle Scholar
  15. 15.
    Hartshorne, R., Hirschowitz, A.: Droites en position générale dans \(\mathbb{P}^n\). In: Algebraic geometry (La Rábida, 1981). Lecture Notes in Mathematics, vol. 961, pp. 169–188. Springer, Berlin (1982)Google Scholar
  16. 16.
    LeBrun, C.: Anti-self-dual metrics and Kähler geometry. In: Proceedings of the International Congress of Mathematicians, vol. 1, 2 (Zürich, 1994), pp. 498–507. Birkhäuser, Basel (1995)Google Scholar
  17. 17.
    Miranda, R.: Algebraic Curves and Riemann Surfaces. AMS Graduate Studies in Mathematics, vol. 5. AMS, Providence (1995)Google Scholar
  18. 18.
    Miyaoka, Y.: The maximal number of quotient singularities on surfaces with given numerical invariants. Math. Ann. 268(2), 159–171 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Nikulin, V.V.: Kummer surfaces. Izv. Akad. Nauk SSSR Ser. Mat. 39(2), 278–293 (1975). 471MathSciNetGoogle Scholar
  20. 20.
    Rams, S.: Projective surfaces with many skew lines. Proc. Amer. Math. Soc. 133(1), 11–13 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Salamon, S., Viaclovsky, J.: Orthogonal complex structures on domains in \({\mathbb{R}}^4\). Math. Ann. 343(4):853–899 (2009). arXiv:0704.3422v1
  22. 22.
    Segre, B.: The maximum number of lines lying on a quartic surface. Quart. J. Math. 14, 86–96 (1943)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Shapiro, G.: On discrete differential geometry in twistor space. J. Geom. Phys. 68, 81–102 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Sidman, J.: On the Castelnuovo–Mumford regularity of products of ideal sheaves. Adv. Geom. 2, 219–229 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Dipartimento Di MatematicaUniversità di Roma “Tor Vergata”RomeItaly
  2. 2.Dipartimento Di MatematicaUniversità di TrentoPovo, TrentoItaly

Personalised recommendations