Annals of Global Analysis and Geometry

, Volume 55, Issue 2, pp 149–180 | Cite as

Spectrum of the Laplacian with weights

  • Bruno ColboisEmail author
  • Ahmad El Soufi


Given a compact Riemannian manifold (Mg) and two positive functions \(\rho \) and \(\sigma \), we are interested in the eigenvalues of the Dirichlet energy functional weighted by \(\sigma \), with respect to the \(L^2\) inner product weighted by \(\rho \). Under some regularity conditions on \(\rho \) and \(\sigma \), these eigenvalues are those of the operator \( -\rho ^{-1} \text{ div }(\sigma \nabla u) \) with Neumann conditions on the boundary if \(\partial M\ne \emptyset \). We investigate the effect of the weights on eigenvalues and discuss the existence of lower and upper bounds under the condition that the total mass is preserved.


Eigenvalue Laplacian Density Cheeger inequality Upper bounds 

Mathematics Subject Classification

35P15 58J50 


  1. 1.
    Anné, C.: Spectre du laplacien et écrasement d’anses. Ann. Sci. École Norm. Sup. (4) 20(2), 271–280 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Astala, K., Päivärinta, L.: Calderón’s inverse conductivity problem in the plane. Ann. Math. (2) 163(1), 265–299 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bérard, P.H.: Spectral Geometry: Direct and Inverse Problems, volume of 1207 Lecture Notes in Mathematics. Springer, Berlin (1986)Google Scholar
  4. 4.
    Berger, M., Gauduchon, P., Mazet, E.: Le spectre d’une variété riemannienne, volume of 194 Lecture Notes in Mathematics. Springer, Berlin (1971)CrossRefzbMATHGoogle Scholar
  5. 5.
    Buser, P.: On Cheeger’s inequality \(\lambda_{1}\ge h^{2}/4\). In: Geometry of the Laplace operator (Proceedings of Symposium on Pure Mathematics, University of Hawaii, Honolulu, Hawaii, 1979), Proceedings of Symposium on Pure Mathematics, vol. XXXVI, pp. 29–77. American Mathematical Society, Providence (1980)Google Scholar
  6. 6.
    Buser, P.: A note on the isoperimetric constant. Ann. Sci. École Norm. Sup. (4) 15(2), 213–230 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chavel, I.: Eigenvalues in Riemannian Geometry, volume 115 of Pure and Applied Mathematics. Academic Press, Orlando (1984). (Including a chapter by Burton Randol, With an appendix by Jozef Dodziuk)Google Scholar
  8. 8.
    Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Problems in Analysis (Papers dedicated to Salomon Bochner, 1969), pp. 195–199. Princeton University Press, Princeton (1970)Google Scholar
  9. 9.
    Colbois, B., El Soufi, A.: Extremal eigenvalues of the Laplacian in a conformal class of metrics: the ‘conformal spectrum’. Ann. Glob. Anal. Geom. 24(4), 337–349 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Colbois, B., El Soufi, A.: Eigenvalues of the Laplacian acting on \(p\)-forms and metric conformal deformations. Proc. Am. Math. Soc. 134(3), 715–721 (2006). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Colbois, B., El Soufi, A., Girouard, A.: Isoperimetric control of the spectrum of a compact hypersurface. J. Reine Angew. Math. 683, 49–65 (2013)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Colbois, B., El Soufi, A., Savo, A.: Eigenvalues of the Laplacian on a manifold with density. Commun. Anal. Geom. 23(3), 639–670 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Colbois, B., Maerten, D.: Eigenvalues estimate for the Neumann problem of a bounded domain. J. Geom. Anal. 18(4), 1022–1032 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Colin de Verdière, Y.: Sur la multiplicité de la première valeur propre non nulle du laplacien. Comment. Math. Helv. 61(2), 254–270 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    El Soufi, A.: Applications harmoniques, immersions minimales et transformations conformes de la sphère. Compos. Math. 85(3), 281–298 (1993)zbMATHGoogle Scholar
  16. 16.
    El Soufi, A., Harrell II, E.M., Ilias, S., Stubbe, J.: On sums of eigenvalues of elliptic operators on manifolds. J. Spectr. Theory 7(4), 985–1022 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    El Soufi, A., Ilias, S.: Immersions minimales, première valeur propre du laplacien et volume conforme. Math. Ann. 275(2), 257–267 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    El Soufi, A., Ilias, S.: Extremal metrics for the first eigenvalue of the Laplacian in a conformal class. Proc. Am. Math. Soc. 131(5), 1611–1618 (2003). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    El Soufi, A., Ilias, S., Ros, A.: Sur la première valeur propre des tores. In Séminaire de Théorie Spectrale et Géométrie, No. 15, Année 1996–1997, volume 15 of Sémin. Théor. Spectr. Géom., pp. 17–23. University of Grenoble I, Saint-Martin-d’Hères (1997)Google Scholar
  20. 20.
    Gentile, G., Pagliara, V.: Riemannian metrics with large first eigenvalue on forms of degree \(p\). Proc. Am. Math. Soc. 123(12), 3855–3858 (1995)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Girouard, A., Nadirashvili, N., Polterovich, I.: Maximization of the second positive Neumann eigenvalue for planar domains. J. Differ. Geom. 83(3), 637–661 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Grigor’yan, A., Netrusov, Y., Yau, S.-T.: Eigenvalues of elliptic operators and geometric applications. Surv. Differ. Geom. IX, 147–217 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hassannezhad, A.: Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem. J. Funct. Anal. 261(12), 3419–3436 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers in Mathematics. Birkhäuser, Basel (2006)zbMATHGoogle Scholar
  25. 25.
    Jammes, P.: Prescription de la multiplicité des valeurs propres du laplacien de Hodge-de Rham. Comment. Math. Helv. 86(4), 967–984 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Jammes, P.: Spectre et géométrie conforme des variétés compactes à bord. Compos. Math. 150(12), 2112–2126 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Jammes, P.: Une inégalité de Cheeger pour le spectre de Steklov. Ann. Inst. Fourier (Grenoble) 65(3), 1381–1385 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kokarev, G.: Variational aspects of Laplace eigenvalues on Riemannian surfaces. Adv. Math. 258, 191–239 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Korevaar, N.: Upper bounds for eigenvalues of conformal metrics. J. Differ. Geom. 37(1), 73–93 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kröger, P.: Upper bounds for the Neumann eigenvalues on a bounded domain in Euclidean space. J. Funct. Anal. 106(2), 353–357 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Laugesen, R.S.: Eigenvalues of the Laplacian on inhomogeneous membranes. Am. J. Math. 120(2), 305–344 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Milman, E.: On the role of convexity in isoperimetry, spectral gap and concentration. Invent. Math. 177(1), 1–43 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Petrides, R.: Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces. Geom. Funct. Anal. 24(4), 1336–1376 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Petrides, R.: On a rigidity result for the first conformal eigenvalue of the Laplacian. J. Spectr. Theory 5(1), 227–234 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Schoen, R., Yau, S.-T.: Lectures on differential geometry. In: Conference Proceedings and Lecture Notes in Geometry and Topology, I. International Press, Cambridge, MA (1994)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Laboratoire de MathématiquesUniversité de NeuchâtelNeuchâtelSwitzerland
  2. 2.Laboratoire de Mathématiques et Physique Théorique, UMR-CNRS 7350Université de ToursToursFrance

Personalised recommendations