Annals of Global Analysis and Geometry

, Volume 54, Issue 4, pp 541–549 | Cite as

Myers’ type theorem with the Bakry–Émery Ricci tensor

  • Jia-Yong Wu


In this paper, we prove a new Myers’ type diameter estimate on a complete connected Reimannian manifold which admits a bounded vector field such that the Bakry–Émery Ricci tensor has a positive lower bound. The result is sharper than previous Myers’ type results. The proof uses the generalized mean curvature comparison applied to the excess function instead of the classical second variation of geodesics.


Bakry–Émery Ricci curvature Ricci soliton Myers’ theorem 

Mathematics Subject Classification

Primary 53C25 Secondary 53C20 53C21 



The author would like to thank anonymous referees for pointing out many expression errors and give many valuable suggestions that helped to improve the presentation of the paper. This work is supported by the NSFC (11671141) and the Natural Science Foundation of Shanghai (17ZR1412800).


  1. 1.
    Alías, L.J., Mastrolia, P., Rigoli, M.: Maximum Principles and Geometric Applications. Springer, Cham (2016)CrossRefGoogle Scholar
  2. 2.
    Bakry, D., Emery, M.: Diffusion hypercontractives. In: Azéma, J., Yor, M. (eds.) Séminaire de Probabilités XIX, 1983/1984. Lecture Notes in Mathematics, vol. 1123, pp. 177–206. Springer, Berlin (1985)CrossRefGoogle Scholar
  3. 3.
    Bakry, D., Qian, Z.-M.: Volume comparison theorems without Jacobi fields in current trends in petential theory. In: Bakry, D., Beznea, L., Bucur, G., Röckner, M. (eds.) Theta Series in Advanced Mathematics, vol. 4, pp. 115–122. Bucharest, Theta (2005)Google Scholar
  4. 4.
    Cao, H.-D.: Existence of gradient Kähler–Ricci solitons. In: Elliptic and Parabolic Methods in Geometry (Minneapolis, MN, 1994), pp. 1–16. A K Peters. Wellesley, (1996)Google Scholar
  5. 5.
    Cao, H.-D.: Recent progress on Ricci Solitons. Recent Advances in Geometric Analysis. Advanced Lectures in Mathematics (ALM), vol. 11, pp. 1–38. International Press, Somerville (2010)Google Scholar
  6. 6.
    Cavalcante, M.P., Oliveira, J.Q., Santos, M.S.: Compactness in weighted manifolds and applications. Results. Math. 68, 143–156 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fernández-López, M., García-Río, E.: A remark on compact Ricci solitons. Math. Ann. 340, 893–896 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fernández-López, M., García-Río, E.: Some gap theorems for gradient Ricci solitons. Int. J. Math. 23(7), 1250072 (2012). MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hamilton, R.: The formation of singularities in the Ricci flow. In: Surveys in Differential Geometry, Vol. 2, pp. 7–136. International Press, Vienna (1995)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ivey, T.: Ricci solitons on compact three-manifolds. Differ. Geom. Appl. 3, 301–307 (1993)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Koiso, N.: On rotationally symmmetric Hamilton’s equation for Ka\(\ddot{{{\rm h}}}\)ler-Einstein metrics. In: Recent Topics in Diff. Anal. Geom., Adv. Studies Pure Math. 18-I, pp. 327–337. Academic Press, Boston (1990)Google Scholar
  12. 12.
    Li, X.-M.: On extensions of Myers’ theorem. Bull. Lond. Math. Soc. 27, 392–396 (1995)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Limoncu, M.: Modifications of the Ricci tensor and applications. Arch. Math. 95, 191–199 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Limoncu, M.: The Bakry–Emery Ricci tensor and its applications to some compactness theorems. Math. Z. 271, 715–722 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lott, J.: Some geometric properties of the Bakry–Émery–Ricci tensor. Comment. Math. Helv. 78, 865–883 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mastrolia, P., Rimoldi, M., Veronelli, G.: Myers’ type theorems and some related oscillation results. J. Geom. Anal. 22, 763–779 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Morgan, F.: Myers’ theorem with density. Kodai Math. J. 29(3), 454–460 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Myers, S.B.: Riemannian manifolds with positive mean curvature. Duke Math. J. 8, 401–404 (1941)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Perelman, G.: The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159
  20. 20.
    Petersen, P., Sprouse, C.: Integral curvature bounds, distance estimates, and applications. J. Differ. Geom. 50, 269–298 (1998)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Soylu, Y.: A Myers-type compactness theorem by the use of Bakry–Emery Ricci tensor. Differ. Geom. Appl. 54, 245–250 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Tadano, H.: Remark on a diameter bound for complete Riemannian manifolds with positive Bakry–Émery Ricci curvature. Differ. Geom. Appl. 44, 136–143 (2016)CrossRefGoogle Scholar
  23. 23.
    Tadano, H.: An upper diameter bound for compact Ricci solitons with application to the Hitchin–Thorpe inequality. J. Math. Phys. 58, 023503 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Wang, X.-J., Zhu, X.-H.: Kähler–Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188, 87–103 (2004)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wei, G., Wylie, W.: Comparison geometry for the Bakry–Émery Ricci tensor. J. Differ. Geom. 83, 377–405 (2009)CrossRefGoogle Scholar
  26. 26.
    Zhang, S.-J.: A theorem of Ambrose for Bakry–Émery Ricci tensor. Ann. Glob. Anal. Geom. 45, 233–238 (2014)CrossRefGoogle Scholar
  27. 27.
    Zhu, S.-H.: The comparison geometry of Ricci curvature. In: Comparison Geometry (Berkeley, CA, 1993–1994), volume 30 of Math. Sci. Res. Inst. Publ, pp. 221–262. Cambridge University Press, Cambridge (1997)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsShanghai Maritime UniversityShanghaiPeople’s Republic of China

Personalised recommendations