Annals of Global Analysis and Geometry

, Volume 48, Issue 4, pp 397–422 | Cite as

On minimal immersions in Finsler space

Article

Abstract

We explore a connection between the Finslerian area functional and well-investigated Cartan functionals to prove new Bernstein theorems, uniqueness and removability results for Finsler-minimal graphs, as well as enclosure theorems and isoperimetric inequalities for minimal immersions in Finsler spaces. In addition, we establish the existence of smooth Finsler-minimal immersions spanning given extreme or graph-like boundary contours.

Keywords

Finsler-minimal immersions Cartan functionals Spherical Radon transform 

Mathematics Subject Classification

44A12 49Q05 49Q10 53A35 53B40 53C60 

References

  1. 1.
    Álvarez Paiva, J.C., Berck, G.: What is wrong with the Hausdorff measure in Finsler spaces. Adv. Math. 204(2), 647–663 (2006). doi:10.1016/j.aim.2005.06.007 MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bailey, T.N., Eastwood, M.G., Gover, A.R., Mason, L.J.: Complex analysis and the Funk transform. J. Korean Math. Soc. 40(4), 577–593 (2003). [Sixth International Conference on Several Complex Variables (Gyeongju, 2002)]Google Scholar
  3. 3.
    Bao, D., Chern, S.S., Shen, Z.: An introduction to Riemann–Finsler geometry. Graduate Texts in Mathematics, vol. 200. Springer, New York (2000)Google Scholar
  4. 4.
    Bergner, M., Fröhlich, S.: Existence, uniqueness and graph representation of weighted minimal hypersurfaces. Ann. Global Anal. Geom. 36(4), 363–373 (2009). doi:10.1007/s10455-009-9164-x MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Busemann, H.: Intrinsic area. Ann. Math. 2(48), 234–267 (1947)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Busemann, H.: A theorem on convex bodies of the Brunn–Minkowski type. Proc. Nat. Acad. Sci. U. S. A. 35, 27–31 (1949)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Chern, S.S., Shen, Z.: Riemann–Finsler geometry. In: Nankai Tracts in Mathematics, vol. 6. World Scientific Publishing Co. Pte. Ltd., Hackensack (2005)Google Scholar
  8. 8.
    Clarenz, U.: Sätze über extremalen zu parametrischen funktionalen. Ph.D. thesis, Univ. of Bonn (1999)Google Scholar
  9. 9.
    Clarenz, U.: Enclosure theorems for extremals of elliptic parametric functionals. Calc. Var. Partial Differ. Equ. 15(3), 313–324 (2002). doi:10.1007/s005260100128 MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Clarenz, U., von der Mosel, H.: Compactness theorems and an isoperimetric inequality for critical points of elliptic parametric functionals. Calc. Var. Partial Differ. Equ. 12(1), 85–107 (2001). doi:10.1007/s005260000050 MATHCrossRefGoogle Scholar
  11. 11.
    Clarenz, U., von der Mosel, H.: Isoperimetric inequalities for parametric variational problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 19(5), 617–629 (2002). doi:10.1016/S0294-1449(02)00096-3
  12. 12.
    Cui, N., Shen, Y.B.: Bernstein type theorems for minimal surfaces in \((\alpha,\beta )\)-space. Publ. Math. Debr. 74(3–4), 383–400 (2009)MATHMathSciNetGoogle Scholar
  13. 13.
    Cui, N., Shen, Y.B.: Minimal rotational hypersurfaces in Minkowski \((\alpha,\beta )\)-space. Geom. Dedicata 151, 27–39 (2011). doi:10.1007/s10711-010-9517-4 MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Dierkes, U., Hildebrandt, S., Küster, A., Wohlrab, O.: Minimal surfaces. I. In: Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 295. Springer, Berlin (1992). (Boundary value problems)Google Scholar
  15. 15.
    Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. In: Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)Google Scholar
  16. 16.
    Funk, P.: Über eine geometrische Anwendung der Abelschen Integralgleichung. Math. Ann. 77(1), 129–135 (1915). doi:10.1007/BF01456824 MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Gardner, R.J.: Geometric tomography. In: Encyclopedia of Mathematics and its Applications, vol. 58. Cambridge University Press, Cambridge (1995)Google Scholar
  18. 18.
    Giaquinta, M., Hildebrandt, S.: Calculus of variations. II. In: Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 311. Springer, Berlin (1996). (The Hamiltonian formalism)Google Scholar
  19. 19.
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Classics in Mathematics. Springer, Berlin (2001). (Reprint of the 1998 edition)Google Scholar
  20. 20.
    Groemer, H.: Geometric applications of Fourier series and spherical harmonics. In: Encyclopedia of Mathematics and its Applications, vol. 61. Cambridge University Press, Cambridge (1996). doi:10.1017/CBO9780511530005
  21. 21.
    Helgason, S.: The Radon transform. In: Progress in Mathematics, vol. 5. Birkhäuser Boston, Mass (1980)Google Scholar
  22. 22.
    Helgason, S.: Groups and geometric analysis. In: Pure and Applied Mathematics, vol. 113. Academic Press Inc., Orlando (1984). (Integral geometry, invariant differential operators, and spherical functions)Google Scholar
  23. 23.
    Hildebrandt, S., von der Mosel, H.: Dominance functions for parametric Lagrangians. In: Geometric Analysis and Nonlinear Partial Differential Equations, pp. 297–326. Springer, Berlin (2003)Google Scholar
  24. 24.
    Hildebrandt, S., von der Mosel, H.: Conformal representation of surfaces, and Plateau’s problem for Cartan functionals. Riv. Mat. Univ. Parma (7) 4*, 1–43 (2005)Google Scholar
  25. 25.
    Hildebrandt, S., Sauvigny, F.: An energy estimate for the difference of solutions for the \(n\)-dimensional equation with prescribed mean curvature and removable singularities. Analysis (Munich) 29(2), 141–154 (2009). doi:10.1524/anly.2009.1042 MATHMathSciNetGoogle Scholar
  26. 26.
    Jenkins, H.B.: On two-dimensional variational problems in parametric form. Arch. Ration. Mech. Anal. 8, 181–206 (1961)MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Overath, P.: Minimal immersions in finsler spaces. Ph.D. thesis, RWTH Aachen University (2014)Google Scholar
  28. 28.
    Overath, P., von der Mosel, H.: Plateau’s problem in Finsler 3-space. Manuscripta Math. 143(3–4), 273–316 (2014). doi:10.1007/s00229-013-0626-x MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. In: 75 years of Radon transform (Vienna, 1992), Conf. Proc. Lecture Notes Math. Phys., IV, pp. 324–339. Int. Press, Cambridge (1994)Google Scholar
  30. 30.
    Räwer, K.: Stabile extremalen parametrischer doppelintegrale in \({\mathbb{R}}^3\). Ph.D. thesis, Univ. of Bonn (1993)Google Scholar
  31. 31.
    Rudin, W.: Functional Analysis. McGraw-Hill Book Co., New York (1973). (McGraw-Hill Series in Higher Mathematics)Google Scholar
  32. 32.
    Shen, Z.: On Finsler geometry of submanifolds. Math. Ann. 311(3), 549–576 (1998). doi:10.1007/s002080050200 MATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Simon, L.: On a theorem of de Giorgi and Stampacchia. Math. Z. 155(2), 199–204 (1977)MATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Simon, L.: On some extensions of Bernstein’s theorem. Math. Z. 154(3), 265–273 (1977)MATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Souza, M., Spruck, J., Tenenblat, K.: A Bernstein type theorem on a Randers space. Math. Ann. 329(2), 291–305 (2004). doi:10.1007/s00208-003-0500-3 MATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Souza, M., Tenenblat, K.: Minimal surfaces of rotation in Finsler space with a Randers metric. Math. Ann. 325(4), 625–642 (2003). doi:10.1007/s00208-002-0392-7 MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    White, B.: Existence of smooth embedded surfaces of prescribed genus that minimize parametric even elliptic functionals on \(3\)-manifolds. J. Differential Geom. 33(2), 413–443 (1991). http://projecteuclid.org/getRecord?id=euclid.jdg/1214446325
  38. 38.
    Winklmann, S.: Isoperimetric inequalites involving generalized mean curvature. Analysis (Munich) 22(4), 393–403 (2002)MATHMathSciNetGoogle Scholar
  39. 39.
    Winklmann, S.: Existence and uniqueness of \(F\)-minimal surfaces. Ann. Global Anal. Geom. 24(3), 269–277 (2003). doi:10.1023/A:1024765105599 MATHMathSciNetCrossRefGoogle Scholar
  40. 40.
    Winklmann, S.: A Bernstein result for entire \(F\)-minimal graphs. Analysis (Munich) 27(4), 375–386 (2007). doi:10.1524/anly.2007.27.4.375

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institut für MathematikRWTH Aachen UniversityAachenGermany

Personalised recommendations