Annals of Global Analysis and Geometry

, Volume 46, Issue 3, pp 313–334 | Cite as

Different approaches to the complex of three Dirac operators

  • Alberto Damiano
  • Irene Sabadini
  • Vladimir Souček
Article

Abstract

An attempt to study the compatibility conditions, and the general free resolution, for the system associated with the Dirac operator in \(k\) vector variables appeared already in Sabadini et al. (Math Z 239: 293–320, 2002), from the point of view of Clifford analysis, and in Sabadini et al. (Exp Math 12: 351–364, 2003) using the tool of megaforms. Other studies have been carried out in other papers, like Krump (Adv Appl Clifford Alg 19: 365–374, 2009), Krump and Souček (17: 537–548, 2007), Salač (The generalized Dolbeault complexes in Clifford analysis, Praha 2012), using methods of representation theory. In this paper, we restrict our attention to the case of three variables and we describe the free resolution associate to the module from various different angles. The comparison has several noteworthy consequences. In particular, it gives the explicit description of all the maps contained in the algebraic resolution and shows that they are invariant with respect to the action of \(SL(3)\times SO(m)\). We also discuss how the methods used in this paper can be generalized to the case of \(k>3\) Dirac operators.

Keywords

Dirac operator Complexes Minimal free resolutions Differential forms 

References

  1. 1.
    Adams, W.W., Loustaunau, P.: Analysis of the module determining the properties of regular functions of several quaternionic variables. Pac. J. Math 196(1), 1–15 (2000)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Adams, W.W., Berenstein, C.A., Loustaunau, P., Sabadini, I., Struppa, D.C.: Regular functions of several quaternionic variables and the Cauchy–Fueter complex. J. Geom. Anal. 9(1), 1–15 (1999)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Baston, R.: Quaternionic complexes. J. Geom. Phys. 8, 29–52 (1992)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Baston, R., Eastwood, M.: The Penrose Transform. Its interaction with representation theory. Oxford Univ. Press, Oxford (1989)MATHGoogle Scholar
  5. 5.
    Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis, Pitman Research Notes in Mathematics, vol. 76, (1982)Google Scholar
  6. 6.
    Bureš, J., Damiano, A., Sabadini, I.: Explicit invariant resolutions for several Fueter operators. J. Geom. Phys. 57(3), 765–775 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    CoCoA Team, CoCoA, A software package for Computations in Commutative Algebra, freely available at: http://cocoa.dima.unige.it
  8. 8.
    Čap, A., Slovák, J.: Parabolic Geometries I: Background an General Theory, AMS Math, Surveys and Monogrpahs, vol. 154, (2009)Google Scholar
  9. 9.
    Colombo, F., Souček, V., Struppa, D.C.: Invariant resolutions for several Fueter operators. J. Geom. Phys. 56(7), 1175–1191 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Colombo, F., Damiano, A., Sabadini, I., Struppa, D.C.: Quaternionic hyperfunctions on \(5\)-dimensional varieties in \({ H}^2\). J. Geom. Anal. 17(3), 459–478 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Colombo, F., Sabadini, I., Sommen, F., Struppa, D.C.: Analysis of Dirac Systems and Computational Algebra, Progress in Mathematical Physics, vol. 39. Birkhäuser, Boston (2004)CrossRefGoogle Scholar
  12. 12.
    Damiano, A.: Computational Approach to Some Problems in Algebraic Analysis, Ph.D. Dissertation. George Mason University, USA (2005)Google Scholar
  13. 13.
    Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor-Valued Functions, Mathematics and Its Applications, vol. 53. Kluwer Academic Publishers, Netherlands (1992)CrossRefGoogle Scholar
  14. 14.
    Einsebud, D.: The Geometry of Syzygies, Graduate Texts in Mathematics, vol. 229. Springer Verlag, New York (2005)Google Scholar
  15. 15.
    Franek, P.: Several Dirac Operators in Parabolic Geometry, Ph.D. Dissertation. Charles University, Prague (2006)Google Scholar
  16. 16.
    Goodmann, R., Wallach, N.R.: Representations and Invariants of the Classical Groups. Cambridge University Press, Cambridge (1998)Google Scholar
  17. 17.
    Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3.0. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern (2005). http://www.singular.uni-kl.de
  18. 18.
    Hartley, D., Tuckey, P.: Gröbner bases in Clifford and Grassmann algebras. J. Symbol. Comput. 20(2), 197–205 (1995)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kreuzer, M., Robbiano, L.: Computational Commutative Algebra 1. Springer, Berlin (2000)CrossRefGoogle Scholar
  20. 20.
    Kreuzer, M., Robbiano, L.: Computational Commutative Algebra 2. Springer, Berlin (2005)Google Scholar
  21. 21.
    Krump, L.: A resolution for the Dirac operator in four variables in dimension 6. Adv. Appl. Clifford Alg. 19, 365–374 (2009)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Krump, L., Souček, V.: The generalized Dolbeault complex in two Clifford variables. Adv. Appl. Clifford Alg. 17, 537–548 (2007)Google Scholar
  23. 23.
    Krump, L.: The generalised Dolbeault complex for four Dirac operators in the stable rank. In: Proceedings of the ICNAAM, Kos 2008, AIP Conference Proceedings 2008, pp. 670–673 (2008)Google Scholar
  24. 24.
    Krump, L., Salač, T.: Exactness of the generalized Dolbeault complex for k Dirac operators in the stable rank. In: Numerical Analysis and Applied Mathematics ICNAAM 2012, Melville, pp. 300–303 (2012)Google Scholar
  25. 25.
    Krump, L., Salač, T., Souček, V.: The resolution for \(k\) Dirac operators on a flag manifold, in preparationGoogle Scholar
  26. 26.
    Levandovskyy, V.: Non-Commutative Computer Algebra for Polynomial Algebras: Gröbner Bases, Applications and Implementation, Ph.D. Thesis (2005)Google Scholar
  27. 27.
    Mora, T.: Gröbner Bases for Non-Commutative Polynomial Rings, vol. 229, pp. 353–362. L.N.C.S., Berlin (1986)Google Scholar
  28. 28.
    Palamodov, V.P.: Linear Differential Operators with Constant Coefficients. Springer Verlag, New York (1970)CrossRefMATHGoogle Scholar
  29. 29.
    Procesi, C.: Lie Groups. An Approach Through Invariants and Representations. Springer-Verlag, Universitext, New York (2007)MATHGoogle Scholar
  30. 30.
    Sabadini, I., Sommen, F., Struppa, D.C.: The Dirac complex on abstract vector variables: megaforms. Exp. Math. 12, 351–364 (2003)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Sabadini, I., Shapiro, M., Struppa, D.C.: Algebraic analysis of the Moisil–Theodorescu system. Compl. Var. 40, 333–357 (2000)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Sabadini, I., Sommen, F., Struppa, D.C., Van Lancker, P.: Complexes of Dirac operators in Clifford algebras. Math. Z. 239, 293–320 (2002)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Salač, T.: \(k\)-Dirac operator and parabolic geometries, preprint, arXiv:1201.0355v1
  34. 34.
    Salač, T.: The Generalized Dolbeault Complexes in CLifford Analysis, PhD thesis, Praha (2012)Google Scholar
  35. 35.
    Souček, V.: Invariant operators and Clifford analysis. Adv. Appl. Clifford Algebras 11, 37–52 (2001)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Alberto Damiano
    • 1
  • Irene Sabadini
    • 2
  • Vladimir Souček
    • 3
  1. 1.Deledda International SchoolGenovaItaly
  2. 2.Dipartimento di MilanoPolitecnico di MilanoMilanItaly
  3. 3.Mathematical InstituteCharles UniversityPragueCzech Republic

Personalised recommendations